Featured Research

from universities, journals, and other organizations

Better way to calculate greenhouse gas value of ecosystems

Date:
June 6, 2010
Source:
University of Illinois at Urbana-Champaign
Summary:
Researchers have developed a new, more accurate method of calculating the change in greenhouse gas emissions that results from changes in land use. The new approach takes into account many factors not included in previous methods, such as the ecosystem's ability to take up or release greenhouse gases over time and all of the greenhouse gases absorbed and released in the process of introducing new crops. The researchers calculated the greenhouse gas value of a variety of ecosystem types.

Plant biology and Energy Biosciences Institute Professor Evan DeLucia and EBI postdoctoral researcher Kristina Anderson-Teixeira developed an improved method for calculating the greenhouse gas value of ecosystems.
Credit: Photo by L. Brian Stauffer

Researchers at the University of Illinois have developed a new, more accurate method of calculating the change in greenhouse gas emissions that results from changes in land use.

Related Articles


The new approach, described in the journal Global Change Biology, takes into account many factors not included in previous methods, the researchers report.

There is an urgent need to accurately assess whether particular land-use projects will increase or decrease greenhouse gas emissions, said Kristina Anderson-Teixeira, a postdoctoral researcher in the Energy Biosciences Institute at Illinois and lead author of the new study. The greenhouse gas value (GHGV) of a particular site depends on qualities such as the number and size of plants; the ecosystem's ability to take up or release greenhouse gases over time; and its vulnerability to natural disturbances, such as fire or hurricane damage, she said.

Greenhouse gases trap heat in the atmosphere and contribute to climate change. The most problematic greenhouse gases include carbon dioxide (CO2); methane (CH4), which is about 25 times more effective than CO2 at trapping heat but persists in the atmosphere for much less time; and nitrous oxide (N2O), an undesirable byproduct of crop fertilization.

The new approach accounts for emissions of each of these gases, expressing their net climatic effect in "carbon-dioxide equivalents," a common currency in the carbon-trading market. This allows scientists to compare the long-term effects of clearing a forest, for example, to the costs of other greenhouse gas emissions, such as those that result from burning fossil fuels for transportation, electricity, heat or the production of biofuels.

At first glance, biofuels appear carbon-neutral because the plants absorb carbon dioxide from the atmosphere and store the carbon in their tissues as they grow, said plant biology and Energy Biosciences Institute professor Evan DeLucia, who co-wrote the paper. That carbon is released when the plants are used as fuels. These emissions are balanced by the uptake of CO2, so -- in theory, at least -- no new carbon is added to the atmosphere, he said.

But the full impact of a new biofuel crop should account for all of the greenhouse gases absorbed and released in the process of introducing new crops, he said.

Researchers and policymakers are already in the habit of conducting "life-cycle" analyses of biofuel crops, taking into account many of the greenhouse gas effects of growing the crops and producing the fuel, such as the combustion of fuel in farm equipment, emissions from the processing plant, and emissions from associated land-use changes.

But current methods of estimating the greenhouse gas value of ecosystems -- whether for biofuels life-cycle analyses or other purposes -- often get it wrong, Anderson-Teixeira said. When considering the cost of replacing a tropical forest with cropland, for example, some may look only at the amount of carbon stored in the trees as a measure of a forest's GHGV.

"What some analyses miss is the potential for that forest to take up more carbon in the future," she said. "And they're missing the greenhouse gas costs -- the added emissions that result from intensively managing the land -- that are associated with that new cropland."

Current approaches also routinely fail to consider the timing of greenhouse gas releases, DeLucia said.

"If you cut down a forest, all that carbon doesn't go up into the atmosphere instantly," he said. "Some of it is released immediately, but the organic matter in roots and soils decays more slowly. How we deal with the timing of those emissions influences how we perceive an ecosystem's value."

Using the new method, the researchers calculated the GHGV of a variety of ecosystem types, including mature and "re-growing" tropical, temperate and boreal forests; tropical and temperate pastures and cropland; wetlands; tropical savannas; temperate shrublands and grasslands; tundra; and deserts.

"In general, unmanaged ecosystems -- those that we are leaving alone, such as a virgin forest or an abandoned farm where trees are re-growing -- are going to have positive greenhouse gas values," Anderson-Teixeira said. Managed ecosystems such as croplands or pastures generally have low or negative greenhouse gas values, she said. (See chart.)

The calculations would of course vary as a result of local conditions, the researchers said, and the GHGV does not account for the other services a particular ecosystem might provide, such as flood control, improved air and water quality, food production or protection of biodiversity.

"To understand the place of nature these days, we've got to put a value on it," DeLucia said. "It's got to compete with all the other values that we put out there. This is by far the most comprehensive way to value an ecosystem in the context of greenhouse gases."

The Energy Biosciences Institute, focused on the development of next-generation biofuels as well as various applications of biology to the energy sector, is a collaboration among the U. of I., the University of California at Berkeley, the Lawrence Berkeley National Laboratory, and BP, which is supporting the institute with a 10-year, $500-million grant. The EBI has facilities at several locations, including the U. of I. Institute for Genomic Biology.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kristina J. Anderson-Teixeira, Evan H. Delucia. The greenhouse gas value of ecosystems. Global Change Biology, 2010; DOI: 10.1111/j.1365-2486.2010.02220.x

Cite This Page:

University of Illinois at Urbana-Champaign. "Better way to calculate greenhouse gas value of ecosystems." ScienceDaily. ScienceDaily, 6 June 2010. <www.sciencedaily.com/releases/2010/05/100526134247.htm>.
University of Illinois at Urbana-Champaign. (2010, June 6). Better way to calculate greenhouse gas value of ecosystems. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2010/05/100526134247.htm
University of Illinois at Urbana-Champaign. "Better way to calculate greenhouse gas value of ecosystems." ScienceDaily. www.sciencedaily.com/releases/2010/05/100526134247.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Japan's Mt. Aso Volcano Spews Rocks

Raw: Japan's Mt. Aso Volcano Spews Rocks

AP (Nov. 28, 2014) — A volcano in southern Japan is spewing volcanic magma rocks. A regional weather observatory says this could be Mt. Aso's first magma eruption in 22 years. (Nov. 28) Video provided by AP
Powered by NewsLook.com
Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins