New! Sign up for our free email newsletter.
Science News
from research organizations

Insight into structure of HIV protein could aid drug design

Date:
June 11, 2010
Source:
University of Iowa - Health Science
Summary:
Researchers have created a three-dimensional picture of an important protein that is involved in how HIV -- the virus responsible for AIDS -- is produced inside human cells. The picture may help researchers design drugs that can prevent HIV from reproducing.
Share:
FULL STORY

Researchers at the University of Iowa Carver College of Medicine and University of Nebraska Medical Center (UNMC) have created a three-dimensional picture of an important protein that is involved in how HIV -- the virus responsible for AIDS -- is produced inside human cells. The picture may help researchers design drugs that can prevent HIV from reproducing.

The research team, led by David Price, Ph.D., UI professor of biochemistry, and Tahir Tahirov, Ph.D., professor of structural biology at the Eppley Institute at UNMC, combined expertise in protein chemistry and X-ray crystallography -- a technique for observing protein structures -- to produce the first crystal structure of the HIV protein called Tat. The structure shows Tat attached to the human protein (P-TEFb) that the virus hijacks during infection.

The structure shows how Tat latches on to this particular human protein and how the interaction alters the shape of the human protein. The study is published in the June 10 issue of the journal Nature.

"We have solved the long sought-after structure of an important HIV protein," Price said. "Now that we know the details of the interaction between Tat and P-TEFb, it may be possible to design inhibitors that target P-TEFb only when it is interacting with Tat."

This distinction is important because although inhibiting P-TEFb blocks replication of the HIV virus, P-TEFb is a vital protein in human cells and inhibiting it kills cells. If an inhibitor could be designed that distinguishes between the P-TEFb attached to Tat and the form that is normal in human cells, that drug might target HIV replication without harming normal cell function.

Such compounds could be useful in combination with existing anti-HIV drugs to further reduce viral levels in HIV-infected individuals.

In addition, drugs that target P-TEFb may also be useful in treating drug-resistant HIV, which is a growing problem. The HIV virus mutates very easily and can develop resistance to current drug that target viral proteins. Targeting a human protein like P-TEFb that the virus needs but cannot mutate may be a successful strategy to counter drug-resistant HIV.

In addition to Price and Tahirov, the research team included Nigar Babayeva at UNMC and UI researchers Katayoun Varzavand, Jeffrey Cooper and Stanley Sedore. The study was funded by grants from the National Institutes of Health.


Story Source:

Materials provided by University of Iowa - Health Science. Note: Content may be edited for style and length.


Journal Reference:

  1. Tahir H. Tahirov, Nigar D. Babayeva, Katayoun Varzavand, Jeffrey J. Cooper, Stanley C. Sedore, David H. Price. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature, 2010; 465 (7299): 747 DOI: 10.1038/nature09131

Cite This Page:

University of Iowa - Health Science. "Insight into structure of HIV protein could aid drug design." ScienceDaily. ScienceDaily, 11 June 2010. <www.sciencedaily.com/releases/2010/06/100609131643.htm>.
University of Iowa - Health Science. (2010, June 11). Insight into structure of HIV protein could aid drug design. ScienceDaily. Retrieved March 29, 2024 from www.sciencedaily.com/releases/2010/06/100609131643.htm
University of Iowa - Health Science. "Insight into structure of HIV protein could aid drug design." ScienceDaily. www.sciencedaily.com/releases/2010/06/100609131643.htm (accessed March 29, 2024).

Explore More

from ScienceDaily

RELATED STORIES