Featured Research

from universities, journals, and other organizations

Harbor seals' whiskers as good at detecting fish as echolocating dolphins, researchers find

Date:
June 13, 2010
Source:
Journal of Experimental Biology
Summary:
Seals use their whiskers to track hydrodynamic trails left by passing fish, but how sensitive are the whiskers? Testing the responses of a seal to trails left by an artificial fin, researchers found that seals can detect trails up 35 seconds after a fin has passed. Fish can cover hundreds of meters in that time, so the whiskers compare well with the performance of echolocating whales and dolphins.

A harbor seal's whiskers are as good at detecting fish as echolocating dolphins, new research shows.
Credit: iStockphoto/Dave Brenner

When a hungry harbor seal sets off in pursuit of a fish diner, the animal has a secret weapon in its tracking arsenal: its whiskers. Detecting hydrodynamic trails in water with their sensitive whiskers, seals easily track passing fish even in the most turbid conditions. Wolf Hanke from the University of Rostock, Germany, explains that blindfolded seals can track passing mini-submarines for a distance of 40m before the wake peters out. However, the hydrodynamic trails left by subs are different from those produced by fish fins, so how long could a seal track a trail generated by a moving fin before the turbulence became too faint to follow?

Hanke and his colleagues published their discovery that the seals can pick up fin trails as long as 35 seconds after the fin passed by in The Journal of Experimental Biology.

PhD student Sven Wieskotten, together with Hanke, Guido Dehnhardt, Bj๖rn Mauck and Lars Miersch, decided to find out how 6-year-old Henry, a harbor seal living at the Marine Science Centre, Germany, would respond to aging hydrodynamic trails. Isolating a section of calm water in a subsurface enclosure, Wieskotten and Hanke covered Henry's eyes with a blindfold and trained him to poke his head into the Perspex box a few seconds after they had swept a small rubber fin through the still water. Then they trained Henry to indicate which direction he thought the fin had moved by rewarding him with a tasty fish snack whenever he was correct.

After two months of training, Henry was ready to tell the team which direction he thought the fin was moving. Guided only by his whiskers, the team allowed Henry to swim into the enclosure 5s after the fin swept through the water and was delighted when Henry successfully identified which direction the fin had moved with over 90% accuracy. Gradually increasing the length of the delay, Wieskotten and his colleagues were amazed that even after a 35-second delay Henry was able to tell them which direction the fin had passed with 70% accuracy. However, after a 40-second delay, Henry lost the trail.

Curious to find out more about the fin's decaying trail, the team added microscopic spheres to the water and filmed them as they swirled through a plane of laser light. Analysing the particles' movements, they found spinning vortices producing jets of water that were very similar to those found in genuine fish wakes. Also, the wake became more dispersed as it decayed, covering a width of 20 cm 5 seconds after the fin swept past and expanding to 50 cm 30 seconds later. And when the team filmed the wake's interaction with Henry's whiskers, they could see Henry twitch his head in the direction that the fin had moved within 0.5 second of the plume touching his whiskers. The wake only had to brush over the seal's whiskers for him to know which direction the fin had passed.

The team suspects that harbor seals sense the structure of the wake's vortices and jets to determine which direction a fin moved and is amazed that the animals can still detect a fin's motion over half a minute later. "A fish can cover tens and hundreds of meters in that time, so vibrissae [whiskers] compare well with the performance of whales and dolphins by echolocation," says Hanke.


Story Source:

The above story is based on materials provided by Journal of Experimental Biology. The original article was written by Kathryn Knight. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wieskotten, S., Dehnhardt, G., Mauck, B., Miersch, L. and Hanke, W. Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). Journal of Experimental Biology, 2010; 213: 2194-2200 [link]

Cite This Page:

Journal of Experimental Biology. "Harbor seals' whiskers as good at detecting fish as echolocating dolphins, researchers find." ScienceDaily. ScienceDaily, 13 June 2010. <www.sciencedaily.com/releases/2010/06/100610191044.htm>.
Journal of Experimental Biology. (2010, June 13). Harbor seals' whiskers as good at detecting fish as echolocating dolphins, researchers find. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2010/06/100610191044.htm
Journal of Experimental Biology. "Harbor seals' whiskers as good at detecting fish as echolocating dolphins, researchers find." ScienceDaily. www.sciencedaily.com/releases/2010/06/100610191044.htm (accessed September 17, 2014).

Share This



More Plants & Animals News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) — The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) — Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) — Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) — Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins