Featured Research

from universities, journals, and other organizations

Super-complex organic molecules found in interstellar space

Date:
June 21, 2010
Source:
Royal Astronomical Society (RAS)
Summary:
A team of scientists has succeeded in identifying one of the most complex organic molecules yet found in the material between the stars, the so-called interstellar medium. The discovery of anthracene could help resolve a decades-old astrophysical mystery concerning the production of organic molecules in space.

Image of the anthracene band recently identified in the Perseus star formation region by researchers from the IAC and the University of Texas. This molecule is formed by three hexagonal rings of carbon atoms surrounded by hydrogen atoms.
Credit: Gaby Perez and Susana Iglesias-Groth

A team of scientists from the Instituto Astrofνsica de Canarias (IAC) and the University of Texas has succeeded in identifying one of the most complex organic molecules yet found in the material between the stars, the so-called interstellar medium. The discovery of anthracene could help resolve a decades-old astrophysical mystery concerning the production of organic molecules in space.

The researchers report their findings in the journal Monthly Notices of the Royal Astronomical Society.

'We have detected the presence of anthracene molecules in a dense cloud in the direction of the star Cernis 52 in Perseus, about 700 light years from the Sun,' explains Susana Iglesias Groth, the IAC researcher heading the study.

In her opinion, the next step is to investigate the presence of amino acids. Molecules like anthracene are prebiotic, so when they are subjected to ultraviolet radiation and combined with water and ammonia, they could produce amino acids and other compounds essential for the development of life

'Two years ago,' says Iglesias, 'we found proof of the existence of another organic molecule, naphthalene, in the same place, so everything indicates that we have discovered a star formation region rich in prebiotic chemistry.' Until now, anthracene had been detected only in meteorites and never in the interstellar medium. Oxidized forms of this molecule are common in living systems and are biochemically active. On our planet, oxidized anthracene is a basic component of aloe and has anti-inflammatory properties.

The new finding suggests that a good part of the key components in terrestrial prebiotic chemistry could be present in interstellar matter.

Since the 1980s, hundreds of bands found in the spectrum of the interstellar medium, known as diffuse spectroscopic bands, have been known to be associated with interstellar matter, but their origin has not been identified until now. This discovery indicates that they could result from molecular forms based on anthracene or naphthalene. Since they are widely distributed in interstellar space, they might have played a key role in the production of many of the organic molecules present at the time of the formation of the Solar System.

The results are based on observations carried out at the William Herschel Telescope at Roque de los Muchachos Observatory on La Palma in the Canary Islands and with the Hobby-Eberly Telescope in Texas in the United States.


Story Source:

The above story is based on materials provided by Royal Astronomical Society (RAS). Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Iglesias-Groth, A. Manchado, R. Rebolo, J. I. Gonzalez Hernandez, D. A. Garcia-Hernandez, D.L. Lambert. Anthracene cations toward the Perseus molecular complex. Monthly Notices of the Royal Astronomical Society, 2010; (in press) [link]

Cite This Page:

Royal Astronomical Society (RAS). "Super-complex organic molecules found in interstellar space." ScienceDaily. ScienceDaily, 21 June 2010. <www.sciencedaily.com/releases/2010/06/100621074446.htm>.
Royal Astronomical Society (RAS). (2010, June 21). Super-complex organic molecules found in interstellar space. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2010/06/100621074446.htm
Royal Astronomical Society (RAS). "Super-complex organic molecules found in interstellar space." ScienceDaily. www.sciencedaily.com/releases/2010/06/100621074446.htm (accessed September 1, 2014).

Share This




More Space & Time News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) — The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) — Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) — The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins