Featured Research

from universities, journals, and other organizations

Translating language of nanopores

Date:
June 24, 2010
Source:
National Institute of Standards and Technology (NIST)
Summary:
Scientists have moved a step closer to developing the means for a rapid diagnostic blood test that can scan for thousands of disease markers and other chemical indicators of health.

Each molecule passing through the nanopore can be identified by monitoring the change it causes in an ionic current flowing across the membrane. When different molecules (purple and green objects) enter the pore (green shown in inset), each reduces the current by a certain amount and time period (shown by corresponding color scheme in the current diagram below), depending on both its size and ability to attract nearby ions (red dots). The NIST model can be used to extract this information, which might be used to identify and characterize biomarkers for medical applications.
Credit: NIST

National Institute of Standards and Technology (NIST) scientists have moved a step closer to developing the means for a rapid diagnostic blood test that can scan for thousands of disease markers and other chemical indicators of health. The team reports it has learned how to decode the electrical signals generated by a nanopore -- a "gate" less than 2 nanometers wide in an artificial cell membrane.

Nanopores are not new themselves; for more than a decade, scientists have sought to use a nanopore-based electrical detector to characterize single-stranded DNA for genetic sequencing applications. More recently, NIST scientists turned their attention to using nanopores to identify, quantify and characterize each of the more than 20,000 proteins the body produces -- a capability that would provide a snapshot of a patient's overall health at a given moment. But while nanopores permit molecules to enter into them one at a time, determining what specific individual molecule has just passed through has not been easy.

To address this problem, members of the NIST team that previously developed a method to distinguish both the size and concentration of each type of molecule the nanopore admits have now answered the question of just how these single molecules interact with the nanopore. Their new theoretical model describes the physics and chemistry of how the nanopore, in effect, parses a molecule, an understanding that will advance the use of nanopores in the medical field.

"This work brings us one step closer to realizing these nanopores as a powerful diagnostic tool for medical science," says Joseph Reiner, who performed the work with Joseph Robertson, and John Kasianowicz, all of NIST's Semiconductor Electronics Division. "It adds to the 'Rosetta Stone' that will allow us to read what molecules have just passed through a nanopore."

Using their new methods, the team was able to model the interaction of a particular type of large molecule through a nanopore's opening with great accuracy. The molecules were polyethylene glycol (PEG), a well-understood polymer that forms chains of varying length.

"PEG chains can be very long, but each link is very small," Kasianowicz says. "It was a good test because we wanted to see if the nanopore could differentiate between two nearly identical large molecules that differ in length by only a few atoms."

The team's device was able to distinguish among different-sized PEG chains easily, and the model they have developed to describe the PEG-nanopore interactions is encouraging them to think that with further effort, the minuscule sensors can be customized to measure many different molecules quickly. "We could conceivably build an array of many nanopores, each one created to measure a specific substance," Kasianowicz says. "Because each nanopore is so small, an array with one for every protein in the body would still be tiny."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. J. E. Reiner, J. J. Kasianowicz, B. J. Nablo, J. W. F. Robertson. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1002194107

Cite This Page:

National Institute of Standards and Technology (NIST). "Translating language of nanopores." ScienceDaily. ScienceDaily, 24 June 2010. <www.sciencedaily.com/releases/2010/06/100624092528.htm>.
National Institute of Standards and Technology (NIST). (2010, June 24). Translating language of nanopores. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2010/06/100624092528.htm
National Institute of Standards and Technology (NIST). "Translating language of nanopores." ScienceDaily. www.sciencedaily.com/releases/2010/06/100624092528.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins