Featured Research

from universities, journals, and other organizations

Cell development: How do plants and animals end up with right number of cells in all the right places?

Date:
July 7, 2010
Source:
Cardiff University
Summary:
How do plants and animals end up with right number of cells in all the right places? For the first time, scientists have gained insight into how this process is coordinated in plants.

Cell patterns in the root of the Arabidopsis plant.
Credit: Image courtesy of Cardiff University

How do plants and animals end up with right number of cells in all the right places?

For the first time, scientists have gained an insight into how this process is co-ordinated in plants. An international team, including Cardiff University's School of Biosciences and Duke University in the USA, have linked the process of cell division with the way cells acquire their different characteristics.

A protein called Short-root, already known to play a part in determining what cells will become, was also found to control cell division.

The researchers report their findings on July 1 in the journal Nature. The discovery may have implications for animals and improve our understanding of what happens when organs are deformed.

The research team had already studied the molecular-level events that determine how particular cells in plants develop into different types. These events involve Short-root and another protein, Scarecrow.

Researchers also had a good understanding of the factors which allow cells to go through their cycle and divide into two daughter cells. "What was missing was a connection between the two," according to Dr Rosangela Sozzani, a postdoctoral researcher at the Duke Institute for Genome Sciences and Policy, North Carolina, who was lead author of the new study.

The research team combined a number of experimental techniques and technologies to produce a dynamic view of the genetic events that Short-root and its partner Scarecrow set into motion within a single type of cell in Arabidopsis plants. They found that at the very same time that cells divide, Short-root and Scarecrow switch on the gene cyclin D6. Cyclin D6 is one of a family of genes that govern cell growth and division.

Professor Jim Murray, who led the Cardiff University involvement in the discovery, said: "Not only does this finding have practical significance to our understanding of how plants develop, this may also be a fundamental process which is relevant to animals as well. For example, we already know that cyclin D6 is present in humans. We also know that disruption of this process can lead to tumours or badly-formed organs, so it is vital that we know more about it."


Story Source:

The above story is based on materials provided by Cardiff University. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Sozzani, H. Cui, M. A. Moreno-Risueno, W. Busch, J. M. Van Norman, T. Vernoux, S. M. Brady, W. Dewitte, J. A. H. Murray, P. N. Benfey. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature, 2010; 466 (7302): 128 DOI: 10.1038/nature09143

Cite This Page:

Cardiff University. "Cell development: How do plants and animals end up with right number of cells in all the right places?." ScienceDaily. ScienceDaily, 7 July 2010. <www.sciencedaily.com/releases/2010/06/100630132758.htm>.
Cardiff University. (2010, July 7). Cell development: How do plants and animals end up with right number of cells in all the right places?. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2010/06/100630132758.htm
Cardiff University. "Cell development: How do plants and animals end up with right number of cells in all the right places?." ScienceDaily. www.sciencedaily.com/releases/2010/06/100630132758.htm (accessed September 14, 2014).

Share This



More Plants & Animals News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) — In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins