Featured Research

from universities, journals, and other organizations

Carbon emissions threaten fish populations

Date:
July 27, 2010
Source:
ARC Centre of Excellence in Coral Reef Studies
Summary:
Humanity's rising carbon dioxide emissions could have a significant impact on the world's fish populations, according to groundbreaking new research. Baby fish may become easy meat for predators as the world's oceans become more acidic due to CO2 fallout from human activity, researchers have discovered.

Humanity's rising carbon dioxide emissions could have a significant impact on the world's fish populations, according to groundbreaking new research carried out in Australia.

Baby fish may become easy meat for predators as the world's oceans become more acidic due to CO2 fallout from human activity, an international team of researchers has discovered.

In a series of experiments reported in a recent issue of the Proceedings of the National Academy of Science (PNAS), the team found that as carbon levels rise and ocean water acidifies, the behaviour of baby fish changes dramatically -- in ways that decrease their chances of survival by 50 to 80 per cent.

"As CO2 increases in the atmosphere and dissolves into the oceans, the water becomes slightly more acidic. Eventually this reaches a point where it significantly changes the sense of smell and behaviour of larval fish," says team leader Professor Philip Munday of the Australian Research Council's Centre of Excellence for Coral Reef Studies (CoECRS) at James Cook University.

"Instead of avoiding predators, they become attracted to them. They appear to lose their natural caution and start taking big risks, such as swimming out in the open -- with lethal consequences."

Dr Mark Meekan from the Australian Institute of Marine Science, a co-author on the paper, says the change in fish behaviour could have serious implications for the sustainability of fish populations because fewer baby fish will survive to replenish adult populations.

"Every time we start a car or turn on the light part of the resulting CO2 is absorbed by the oceans, turning them slightly more acidic. Ocean pH has already declined by 0.1 unit and could fall a further 03.-0.4 of a unit if we continue to emit CO2 at our present increasing rate.

"We already know this will have an adverse effect on corals, shellfish, plankton and other organisms with calcified skeletons. Now we are starting to find it could affect other marine life, such as fish."

Earlier research by Professor Munday and colleagues found that baby 'Nemo' clownfish were unable to find their way back to their home reef under more acidic conditions. The latest experiments cover a wider range of fish species and show that acidified sea water produces dangerous changes in fish behaviour.

"If humanity keeps on burning coal and oil at current rates, atmospheric CO2 levels will be 750-1000 parts per million by the end of the century. This will acidify the seas much faster than has happened at any stage in the last 650,000 years.

"In our experiments we created the kind of sea water we will have in the latter part of this century if we do nothing to reduce emissions. We exposed baby fish to it, in an aquarium and then returned some to the sea to see how they behaved.

"When we released them on the reef, we found that they swam further away from shelter and their mortality rates were five to eight times higher than those of normal baby fish," Professor Munday says.

He adds it should be clearly understood that this impact is likely to happen independent of global warming, and is a direct consequence of human carbon emissions.

The research team concludes "Our results demonstrate that additional CO2 absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations."

Professor Munday adds "In its 2008 report on the state of the world's fisheries the UN Food and Agriculture Organization said "the maximum wild capture fisheries potential from the world's oceans has probably been reached." If you add the impact of ocean acidification and other climate change impacts to this, it means there are grounds for serious concern about the future state of world fish stocks and the amount of food we will be able to obtain from the sea."

The article "Replenishment of fish populations is threatened by ocean acidification" by Philip L. Munday, Danielle L. Dixson, Mark I. McCormick, Mark Meekan, Maud C.O. Ferrari and Douglas P. Chivers appears in the latest issue of PNAS.


Story Source:

The above story is based on materials provided by ARC Centre of Excellence in Coral Reef Studies. Note: Materials may be edited for content and length.


Journal Reference:

  1. Philip L. Munday, Danielle L. Dixson, Mark I. McCormick, Mark Meekan, Maud C.O. Ferrari and Douglas P. Chivers. Replenishment of fish populations is threatened by ocean acidification. PNAS, July 6, 2010 DOI: 10.1073/pnas.1004519107

Cite This Page:

ARC Centre of Excellence in Coral Reef Studies. "Carbon emissions threaten fish populations." ScienceDaily. ScienceDaily, 27 July 2010. <www.sciencedaily.com/releases/2010/07/100707091211.htm>.
ARC Centre of Excellence in Coral Reef Studies. (2010, July 27). Carbon emissions threaten fish populations. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2010/07/100707091211.htm
ARC Centre of Excellence in Coral Reef Studies. "Carbon emissions threaten fish populations." ScienceDaily. www.sciencedaily.com/releases/2010/07/100707091211.htm (accessed April 19, 2014).

Share This



More Plants & Animals News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins