Featured Research

from universities, journals, and other organizations

Origins of multicellularity: All in the family

Date:
July 9, 2010
Source:
Salk Institute
Summary:
One of the most pivotal steps in evolution -- the transition from unicellular to multicellular organisms -- may not have required as much retooling as commonly believed, scientists have found. A comparison of the genomes of the multicellular algae Volvox carteri and its closest unicellular relative Chlamydomonas reinhardtii revealed that multicellular organisms may have been able to build their more complex molecular machinery largely from the same list of parts that was already available to their unicellular ancestors.

This is Volvox carteri.
Credit: Courtesy of Dr. David Kirk, Washington University, St. Louis

One of the most pivotal steps in evolution-the transition from unicellular to multicellular organisms-may not have required as much retooling as commonly believed, found a globe-spanning collaboration of scientists led by researchers at the Salk Institute for Biological Studies and the US Department of Energy's Joint Genome Institute.

A comparison of the genomes of the multicellular algae Volvox carteri and its closest unicellular relative Chlamydomonas reinhardtii revealed that multicellular organisms may have been able to build their more complex molecular machinery largely from the same list of parts that was already available to their unicellular ancestors.

"If you think of proteins in terms of lego bricks Chlamydomonas already had a great lego set," says James Umen, Ph.D., assistant professor in the Plant Molecular and Cellular Biology Laboratory at the Salk Institute. "Volvox didn't have to buy a new one, and instead could experiment with what it had inherited from its ancestor."

Altogether the findings, published in the journal Science, suggest that very limited protein-coding innovation occurred in the Volvox lineage. "We expected that there would be some major differences in genome size, number of genes, or gene families sizes between Volvox and Chlamydomonas," says Umen. "Mostly that turned out not to be the case."

The evolution of multicellularity occurred repeatedly and independently in diverse lineages including animals, plants, fungi, as well as green and red algae. "This transition is one of the great evolutionary events that shaped life on earth," says co-first author Simon E. Prochnik, Ph.D., a Computationial Scientist at the DOE Joint Genome Institute. "It has generated much thought and speculation about what makes multicellular organisms different or more complex than their unicellular ancestors."

In most cases the switch from a solitary existence to a communal one happened so long ago-over 500 million years-that the genetic changes enabling it are very difficult to trace. An interesting exception to the rule are volvocine green algae. For them, the transition to multicellularity happened in a series of small, potentially adaptive changes, and the progressive increase in morphological and developmental complexity can still be seen in contemporary members of the group (see slide show).

Volvox, the most sophisticated member of the lineage, is believed to have evolved from a Chlamydomonas-like ancestor within the last 200 million years, making the two living organisms an appealing model to study the evolutionary changes that brought about multicellularity and cellular differentiation.

To gather data for the comparative genomic analysis, the researchers sequenced the 138 million base pair Volvox genome using a whole genome shotgun strategy. The genome itself is 17% larger than the previously sequenced genome of Chlamydomonas and the sequence divergence between the two is comparable to that between human and chicken.

Despite the modest increase in genome size, the number of predicted proteins turned out to be very similar for the two organisms (14,566 in Volvox vs. 14,516 in Chlamydomonas) and no significant differences could be identified in the repertoires of protein domains or domain combinations. Protein domains are parts of proteins that can evolve, function, and exist independently of the rest of the protein chain.

"This was somewhat unexpected," explains Umen, "since innovation at the domain level was previously thought to play a role in the evolution of multicellularity in the plant and animal lineages."

In contrast to the overall lack of innovation, protein families specific to volvocine algae, such as extracellular matrix proteins, were enriched in Volvox compared to Chlamydomonas. Each mature Volvox colony is composed of numerous flagellated cells similar to Chlamydomonas, which are embedded in the surface of a spheroid of elaborately patterned extracellular matrix (ECM) that is clearly related to the Chlamydomonas cell wall. Maybe not surprisingly, the difference in size and complexity between the Volvox extracellular matrix and Chlamydomonas cell wall is mirrored by a dramatic increase in the number and variety of Volvox genes for two major ECM protein families, pherophorins and VMPs.

Additionally, Umen and his collaborators identified an increase in the number of cyclin D proteins in Volvox, which govern cell division and may be necessary to ensure the complex regulation of cell division during Volvox development. Last but not least, Volvox adapted a few of its existing genes to acquire novel functions. Members of the pherophorin family, for one, not only help build the extracellular matrix; some subtypes evolved into a diffusible hormonal trigger for sexual differentiation.

Researchers who also contributed to this work include Alan Kuo, Uffe Hellsten, Jarrod Chapman, Astrid Terry, Jasmyn Pangilinan, Asaf Salamov, Harris Shapiro, Erika Lindquist, Susan Lucas, Igor V Grigoriev, Harris Shapiro and Daniel S. Rokhsar at U.S. Department of Energy Joint Genome Institute in Walnut Creek, Patrick Ferris at the Salk Institute for Biological Studies, Aurora Nedelcu at the University of New Brunswick in Fredericton, Canada, Arman Hallmann at the University of Bielefeld, Germany, Stephen M. Miller at the University of Maryland, Baltimore, Ichiro Nishii at the Nara Women's University in Nara-shi, Japan, Lillian K. Fritz-Laylin at the Center for Integrative Genomics, Berkeley, Oleg Simakov at the EMBL in Heidelberg, Germany, Stefan A. Rensing at the University of Freiburg, Germany, Vladimir Kapitonov and Jerzy Jurka at the Genetic Information Research Institute in Mountain View, Jeremy Schmutz at the HudsonAlpha Institute in Huntsville, Rόdiger Schmitt at the University of Regensburg, Germany and David Kirk at Washington University in St. Louis.


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Simon E. Prochnik, James Umen, Aurora M. Nedelcu, Armin Hallmann, Stephen M. Miller, Ichiro Nishii, Patrick Ferris, Alan Kuo, Therese Mitros, Lillian K. Fritz-Laylin, Uffe Hellsten, Jarrod Chapman, Oleg Simakov, Stefan A. Rensing, Astrid Terry, Jasmyn Pangilinan, Vladimir Kapitonov, Jerzy Jurka, Asaf Salamov, Harris Shapiro, Jeremy Schmutz, Jane Grimwood, Erika Lindquist, Susan Lucas, Igor V. Grigoriev, Rόdiger Schmitt, David Kirk, and Daniel S. Rokhsar. Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri. Science, 2010; 329 (5988): 223-226 DOI: 10.1126/science.1188800

Cite This Page:

Salk Institute. "Origins of multicellularity: All in the family." ScienceDaily. ScienceDaily, 9 July 2010. <www.sciencedaily.com/releases/2010/07/100708141541.htm>.
Salk Institute. (2010, July 9). Origins of multicellularity: All in the family. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/07/100708141541.htm
Salk Institute. "Origins of multicellularity: All in the family." ScienceDaily. www.sciencedaily.com/releases/2010/07/100708141541.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) — The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) — An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) — The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) — Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins