Featured Research

from universities, journals, and other organizations

New solar energy conversion process could double solar efficiency of solar cells

Date:
August 2, 2010
Source:
Stanford University
Summary:
A new process that simultaneously combines the light and heat of solar radiation to generate electricity could offer more than double the efficiency of existing solar cell technology, say the engineers who discovered it and proved that it works. The process, called 'photon enhanced thermionic emission," or PETE, could reduce the costs of solar energy production enough for it to compete with oil as an energy source.

A small PETE device made with cesium-coated gallium nitride glows while being tested inside an ultra-high vacuum chamber. The tests proved that the process simultaneously converted light and heat energy into electrical current.
Credit: Courtesy of Nick Melosh

A new process that simultaneously combines the light and heat of solar radiation to generate electricity could offer more than double the efficiency of existing solar cell technology, say the Stanford engineers who discovered it and proved that it works. The process, called "photon enhanced thermionic emission," or PETE, could reduce the costs of solar energy production enough for it to compete with oil as an energy source.

Related Articles


Stanford engineers have figured out how to simultaneously use the light and heat of the sun to generate electricity in a way that could make solar power production more than twice as efficient as existing methods and potentially cheap enough to compete with oil.

Unlike photovoltaic technology currently used in solar panels -- which becomes less efficient as the temperature rises -- the new process excels at higher temperatures.

Called "photon enhanced thermionic emission," or PETE, the process promises to surpass the efficiency of existing photovoltaic and thermal conversion technologies.

"This is really a conceptual breakthrough, a new energy conversion process, not just a new material or a slightly different tweak," said Nick Melosh, an assistant professor of materials science and engineering, who led the research group. "It is actually something fundamentally different about how you can harvest energy."

And the materials needed to build a device to make the process work are cheap and easily available, meaning the power that comes from it will be affordable.

Melosh is senior author of a paper describing the tests the researchers conducted. It was published this week in Nature Materials.

"Just demonstrating that the process worked was a big deal," Melosh said. "And we showed this physical mechanism does exist, it works as advertised."

Most photovoltaic cells, such as those used in rooftop solar panels, use the semiconducting material silicon to convert the energy from photons of light to electricity. But the cells can only use a portion of the light spectrum, with the rest just generating heat.

This heat from unused sunlight and inefficiencies in the cells themselves account for a loss of more than 50 percent of the initial solar energy reaching the cell.

If this wasted heat energy could somehow be harvested, solar cells could be much more efficient. The problem has been that high temperatures are necessary to power heat-based conversion systems, yet solar cell efficiency rapidly decreases at higher temperatures.

Until now, no one had come up with a way to wed thermal and solar cell conversion technologies.

Melosh's group figured out that by coating a piece of semiconducting material with a thin layer of the metal cesium, it made the material able to use both light and heat to generate electricity.

"What we've demonstrated is a new physical process that is not based on standard photovoltaic mechanisms, but can give you a photovoltaic-like response at very high temperatures," Melosh said. "In fact, it works better at higher temperatures. The higher the better."

While most silicon solar cells have been rendered inert by the time the temperature reaches 100 degrees Celsius, the PETE device doesn't hit peak efficiency until it is well over 200 degrees C.

Because PETE performs best at temperatures well in excess of what a rooftop solar panel would reach, the devices will work best in solar concentrators such as parabolic dishes, which can get as hot as 800 degrees C. Dishes are used in large solar farms similar to those proposed for the Mojave Desert in Southern California and usually include a thermal conversion mechanism as part of their design, which offers another opportunity for PETE to help generate electricity, as well as minimizing costs by meshing with existing technology.

"The light would come in and hit our PETE device first, where we would take advantage of both the incident light and the heat that it produces, and then we would dump the waste heat to their existing thermal conversion systems," Melosh said. "So the PETE process has two really big benefits in energy production over normal technology."

Photovoltaic systems never get hot enough for their waste heat to be useful in thermal energy conversion, but the high temperatures at which PETE performs are perfect for generating usable high temperature waste heat. Melosh calculates the PETE process can get to 50 percent efficiency or more under solar concentration, but if combined with a thermal conversion cycle, could reach 55 or even 60 percent -- almost triple the efficiency of existing systems.

The team would like to design the devices so they could be easily bolted on to existing systems, making conversion relatively inexpensive.

The researchers used a gallium nitride semiconductor in the "proof of concept" tests. The efficiency they achieved in their testing was well below what they have calculated PETE's potential efficiency to be, which they had anticipated. But they used gallium nitride because it was the only material that had shown indications of being able to withstand the high temperature range they were interested in and still have the PETE process occur.

With the right material -- most likely a semiconductor such as gallium arsenide, which is used in a host of common household electronics -- the actual efficiency of the process could reach up to the 50 or 60 percent the researchers have calculated. They are already exploring other materials that might work.

Another advantage of the PETE system is that by using it in solar concentrators, the amount of semiconductor material needed for a device is quite small.

"For each device, we are figuring something like a six-inch wafer of actual material is all that is needed," Melosh said. "So the material cost in this is not really an issue for us, unlike the way it is for large solar panels of silicon."

The cost of materials has been one of the limiting factors in the development of the solar power industry, so reducing the amount of investment capital needed to build a solar farm is a big advance.

"The PETE process could really give the feasibility of solar power a big boost," Melosh said. "Even if we don't achieve perfect efficiency, let's say we give a 10 percent boost to the efficiency of solar conversion, going from 20 percent efficiency to 30 percent, that is still a 50 percent increase overall."

And that is still a big enough increase that it could make solar energy competitive with oil.

The research was largely funded by the Global Climate and Energy Project at Stanford and the Stanford Institute for Materials Energy Systems, which is a joint venture of Stanford and SLAC National Accelerator Laboratory, with additional support from the Department of Energy and DARPA.


Story Source:

The above story is based on materials provided by Stanford University. The original article was written by Louis Bergeron. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jared W. Schwede, Igor Bargatin, Daniel C. Riley, Brian E. Hardin, Samuel J. Rosenthal, Yun Sun, Felix Schmitt, Piero Pianetta, Roger T. Howe, Zhi-Xun Shen & Nicholas A. Melosh. Photon-enhanced thermionic emission for solar concentrator systems. Nature Materials, 01 August 2010 DOI: 10.1038/nmat2814

Cite This Page:

Stanford University. "New solar energy conversion process could double solar efficiency of solar cells." ScienceDaily. ScienceDaily, 2 August 2010. <www.sciencedaily.com/releases/2010/08/100802101813.htm>.
Stanford University. (2010, August 2). New solar energy conversion process could double solar efficiency of solar cells. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/08/100802101813.htm
Stanford University. "New solar energy conversion process could double solar efficiency of solar cells." ScienceDaily. www.sciencedaily.com/releases/2010/08/100802101813.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Terrifying Black Seadevil Fish Captured on First-of-Its Kind Video

Terrifying Black Seadevil Fish Captured on First-of-Its Kind Video

Buzz60 (Nov. 24, 2014) An aquarium captures a first-of-its kind video of a notoriously camera-shy fish that’s also not so camera-friendly. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins