Featured Research

from universities, journals, and other organizations

Ancient microbes responsible for breathing life into ocean 'deserts'

Date:
August 23, 2010
Source:
Arizona State University
Summary:
Billions of years ago, Earth differed greatly from our modern environment -- the ancient atmosphere contained almost no oxygen. The life-supporting atmosphere we currently enjoy did not develop overnight. On the most basic level, biological activity in the ocean shaped the oxygen concentrations in the atmosphere. New research shows that "oxygen oases" in the surface ocean were sites of significant oxygen production long before the breathing gas began to accumulate in the atmosphere.

The orange cells in this microscope image are Synechococcus, a unicellular cyanobacterium only about 1 m in size. Organisms like Synechococcus were responsible for pumping oxygen into the environment 2.5 billion years ago.
Credit: Susanne Neuer/Amy Hansen

More than two and a half billion years ago, Earth differed greatly from our modern environment, specifically in respect to the composition of gases in the atmosphere and the nature of the life forms inhabiting its surface. While today's atmosphere consists of about 21 percent oxygen, the ancient atmosphere contained almost no oxygen. Life was limited to unicellular organisms. The complex eukaryotic life we are familiar with -- animals, including humans -- was not possible in an environment devoid of oxygen.

Related Articles


The life-supporting atmosphere Earth's inhabitants currently enjoy did not develop overnight. On the most basic level, biological activity in the ocean has shaped the oxygen concentrations in the atmosphere over the last few billion years. In a paper published August 23 by Nature Geoscience online, Arizona State University researchers Brian Kendall and Ariel Anbar, together with colleagues at other institutions, show that "oxygen oases" in the surface ocean were sites of significant oxygen production long before the breathing gas began to accumulate in the atmosphere.

By the close of this period, Earth witnessed the emergence of microbes known as cyanobacteria. These organisms captured sunlight to produce energy. In the process, they altered Earth's atmosphere through the production of oxygen -- a waste product to them, but essential to later life. This oxygen entered into the seawater, and from there some of it escaped into the atmosphere.

"Our research shows that oxygen accumulation on Earth first began to occur in surface ocean regions near the continents where the nutrient supply would have been the highest," explains Kendall, a postdoctoral research associate at the School of Earth and Space Exploration in ASU's College of Liberal Arts and Sciences. "The evidence suggests that oxygen production in the oceans was vigorous in some locations at least 100 million years before it accumulated in the atmosphere. Photosynthetic production of oxygen by cyanobacteria is the simplest explanation."

The idea of "oxygen oases," or regions of initial oxygen accumulation in the surface ocean, was hypothesized decades ago. However, it is only in the past few years that compelling geochemical evidence has been presented for the presence of dissolved oxygen in the surface ocean 2.5 billion years ago, prior to the first major accumulation of oxygen in the atmosphere (known as the Great Oxidation Event).

Kendall's work is the latest in a series of recent studies by a collaborative team of researchers from ASU; University of California, Riverside; and University of Maryland that point to the early rise of oxygen in the oceans. Together with colleagues from University of Washington and University of Alberta, this team first presented evidence for the presence of dissolved oxygen in these oceans in a series of four Science papers over the past few years. These papers focused on a geologic formation called the Mt. McRae Shale from Western Australia. One of these papers, led by the ASU team, presented geochemical profiles that showed an abundance of two redox-sensitive elements -- rhenium (Re) and molybdenum (Mo) -- implying that small amounts of oxygen mobilized these metals from the crust on land or in the ocean, and transport them through an oxic surface ocean to deeper anoxic waters where the metals were hidden into organic-rich sediments. Kendall participated in this research while a postdoctoral student at the University of Alberta.

Kendall's goal in the new project was to look for evidence of dissolved oxygen in another location. He wanted to see if the geochemical evidence from the Mt. McRae Shale in Western Australia would be found in similarly-aged rocks from South Africa. Those rocks were obtained in a project supported by the Agouron Institute. Kendall's research was supported by grants from NASA and the National Science Foundation.

What Kendall discovered was a unique relationship of high rhenium and low molybdenum enrichments in the samples from South Africa, pointing to the presence of dissolved oxygen on the seafloor itself.

"In South Africa, samples from the continental slope beneath the shallower platform were thought to be deposited at water depths too deep for photosynthesis. So it was a big surprise that we found evidence of dissolved oxygen on the seafloor at these depths. This discovery suggests that oxygen was produced at the surface in large enough quantities that some oxygen survived as it was mixed to greater depths. That implies a significantly larger amount of oxygen production and accumulation in 'oxygen oases' than was previously realized."

A key contribution to this study came from Christopher Reinhard and Timothy Lyons, collaborators at the University of California, Riverside, and Simon Poulton at Newcastle University, who found that the chemistry of iron (Fe) in the same shales is also consistent with the presence of dissolved oxygen.

"It was especially satisfying to see two different geochemical methods -- rhenium and molybdenum abundances and Fe chemistry -- independently tell the same story," Kendall noted.

Evidence that the atmosphere contained at most minute amounts of oxygen came from measurements of the relative abundances of sulfur (S) isotopes. These measurements were performed by Alan Kaufman, a collaborator at the University of Maryland.

"Research like Brian's on the co-evolution of Earth's atmosphere, oceans and biosphere is not only important for unraveling key events in Earth history, it also has broad relevance to our search for life on other planets," explains Professor Ariel Anbar, director of the Astrobiology Program at ASU and Kendall's postdoctoral mentor. "One of the ways we will look for life on planets orbiting other stars is to look for oxygen in their atmospheres. So we want to know how the rise of oxygen relates to the emergence of photosynthesis."

On a more practical level, Anbar observes that the research also connects to emerging concerns about our own planet. "Recent research in the modern oceans reveals that the amount of oxygen is decreasing in some places," he explains. "Some suspect this decrease is tied to global warming. One of the ways we might figure that out is to reconstruct ocean oxygen content on the slopes of the seafloor in recent history. So the same techniques that Brian is advancing and applying to billion-year-old rocks might be used to understand how humans are changing the environment today."


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brian Kendall, Christopher T. Reinhard, Timothy W. Lyons, Alan J. Kaufman, Simon W. Poulton & Ariel D. Anbar. Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience, 2010; DOI: 10.1038/ngeo942

Cite This Page:

Arizona State University. "Ancient microbes responsible for breathing life into ocean 'deserts'." ScienceDaily. ScienceDaily, 23 August 2010. <www.sciencedaily.com/releases/2010/08/100823113436.htm>.
Arizona State University. (2010, August 23). Ancient microbes responsible for breathing life into ocean 'deserts'. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2010/08/100823113436.htm
Arizona State University. "Ancient microbes responsible for breathing life into ocean 'deserts'." ScienceDaily. www.sciencedaily.com/releases/2010/08/100823113436.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins