Featured Research

from universities, journals, and other organizations

New approach for cancer medication discovered: Researchers demonstrate rocking movement in anti-stress protein Hsp90

Date:
August 23, 2010
Source:
Technische Universitaet Muenchen
Summary:
The protein Hsp90 plays a significant role in the survival of cells that are exposed to stress. Researchers in Germany uncovered this protein's mode of operation some time ago -- but now Hsp90 has surprised even the experts with an unexpected pattern of motion. The results may help researchers discover specific cancer medication.

The protein Hsp90 has surprised even the experts with an unexpected pattern of motion.
Credit: C. Ratzke und T. Hugel / TUM

The protein Hsp90 plays a significant role in the survival of cells that are exposed to stress. Researchers at the Technische Universitaet Muenchen (TUM) uncovered this protein's mode of operation some time ago -- but now Hsp90 has surprised even the experts with an unexpected pattern of motion.

The results are published in the current online issue of the journal Proceedings of the National Academy of Sciences and may help researchers discover specific cancer medication.

Proteins are the motors of the cell: They transport, among other things, nutrients, move our muscles, convert substances chemically or fold other proteins. The so-called heat shock protein Hsp90 is eminently important for our cells since it plays a decisive role in many basic processes -- in humans as well as in bacteria or yeasts. For example, it is decisive in folding polypeptide chains into functioning proteins with very precisely defined spatial structures. Especially when cells are exposed to stress through heat or poisonous substances, Hsp90 production increases to keep the damage in check.

The anti-stress protein is a dimer (which consists of two identical proteins) and can be roughly divided into three segments: the N terminal domain at the top, the middle domain and the C terminal at the bottom. Hsp90 taps the energy it requires for its work from the slow splitting of ATP, the fuel of every cell. In this process, the two strands move in opposing directions, albeit only a few nanometers. The TUM groups of Prof. Thorsten Hugel from the Department of Physics and Prof. Johannes Buchner from the Department of Chemistry are quite familiar with the movement of Hsp90: They were the first to observe the scissor-like movement in real-time. Yet even they were caught off guard: Instead of the familiar one-ended scissor movement at the N terminal domains they were now observing the rocking movement at both ends of the protein.

Hsp90 opens and closes in a scissors-like manner at the C terminal as well -- something hitherto unknown in dimers. The researchers relied on the so-called FRET technology (FRET = Fφrster Resonance Energy Transfer) in their new study. They attached two fluorescent molecules at precisely defined positions in the Hsp90 and used these as a molecular ruler: When one pigment is illuminated, the other glows with increasing intensity the closer the two pigments get to each other. Using this effect, they were able to observe the nanometer-scale, double-ended scissor movement in individual Hsp90 dimers using a specially constructed microscope which allowed to study single molecules.

Particularly interesting is that the double scissor movements at the N and C terminals are closely coupled: The Hsp90 dimer obviously opens and closes in alternation at each end, like a rocker. "That explains the great stability of the dimer -- otherwise Hsp90 would fall apart much faster," explains Thorsten Hugel. His team was also very surprised by the mechanism regulating the speed of the rocking motion: it is the ATP bound at the N terminal domains that regulates the motion at the C terminal end. The researchers showed this by switching off the dimer's ATP energy supply. The team concluded that Hsp90 communicates internally across an unusually long distance of almost ten nanometers.

The observed movement and communication patterns are interesting not only for basic research, but also for medical research since Hsp90 is a new drug target in cancer therapy. The most promising drug candidates to date block the binding of ATP at the N terminal domains of the anti-stress protein. However, these compounds may have undesirable side effects. Thanks to their new insights, the TUM researchers can now concentrate on the C terminal dimerisation of Hsp90: "There we have unique docking points for anti-cancer drugs that should function without side effects," says Hugel.

The research was funded by the Deutsche Forschungsgemeinschaft (German Research Foundation), the Fonds der Chemischen Industrie (Chemical Industry Fund) and the two Excellence Clusters Nanoinitiative Mόnchen (NIM) and Munich Center for Integrated Protein Science (CIPSM).


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Ratzke, M. Mickler, B. Hellenkamp, J. Buchner and T. Hugel. Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proceedings of the National Academy of Sciences, 2010;

Cite This Page:

Technische Universitaet Muenchen. "New approach for cancer medication discovered: Researchers demonstrate rocking movement in anti-stress protein Hsp90." ScienceDaily. ScienceDaily, 23 August 2010. <www.sciencedaily.com/releases/2010/08/100823152307.htm>.
Technische Universitaet Muenchen. (2010, August 23). New approach for cancer medication discovered: Researchers demonstrate rocking movement in anti-stress protein Hsp90. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2010/08/100823152307.htm
Technische Universitaet Muenchen. "New approach for cancer medication discovered: Researchers demonstrate rocking movement in anti-stress protein Hsp90." ScienceDaily. www.sciencedaily.com/releases/2010/08/100823152307.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) — Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) — More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) — CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) — Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins