Featured Research

from universities, journals, and other organizations

Mosquitoes: Genetic structure of first animal to show evolutionary response to climate change determined

Date:
September 5, 2010
Source:
National Science Foundation
Summary:
Scientists have determined the fine-scale genetic structure of the first animal to show an evolutionary response to rapid climate change.

The pitcher plant mosquito develops entirely within the water-filled purple pitcher plant.
Credit: William Bradshaw and Christina Holzapfel

Scientists at the University of Oregon have determined the fine-scale genetic structure of the first animal to show an evolutionary response to rapid climate change.

Related Articles


They used a high-throughput sequencing technique called Restriction-site Associated DNA (RAD) tagging to make the discovery.

Their results, which focus on the pitcher plant mosquito, Wyeomyia smithii, are published this week in the journal Proceedings of the National Academy of Sciences (PNAS).

RAD tagging is an effective and straightforward way of barcoding sections of genomic material, much as grocery items are coded at the local supermarket, say the scientists.

"This project demonstrates the power of genomics technologies, which can provide new knowledge about the vast array of Earth's species," says Sam Scheiner, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research.

"Although this small mosquito has become the poster child for genetic response to climate change," says William Bradshaw, one of the paper's co-authors, "its evolution during post-glacial invasion of North America has been a question."

Using the RAD-Tag approach, the scientists have demonstrated that post-glacial populations of Wyeomyia smithii originated from a southern Appalachian Mountain refugium after recession of the Laurentide Ice Sheet some 22,000 to 19,000 years ago.

Range expansion into the previously glaciated north proceeded in a sequential, ordered wave rather than by a "hit-or-miss" hopscotch process, the biologists found.

With this detailed information, they will be able to determine the genetic mechanism underlying photoperiod response to rapid climate change--responsible for the correct timing of dormancy, migration, development and reproduction in temperate organisms.

The knowledge will act as a template for research on blood-feeding in mosquito vectors of dengue, encephalitis and malaria.

The mosquito in question lives within the water-filled leaves of the purple pitcher plant, Sarracenia purpurea, also known as the side-saddle flower, whose range includes the eastern seaboard of the U.S., the Great Lakes and southeastern Canada.

Sarracenia purpurea is the most common and widely distributed pitcher plant, and is the only member of the genus that inhabits cold temperate climates. Where the purple pitcher plant is found, so, too, is Wyeomyia smithii.

Before the time of Darwin, biologists sought links between apparently related groups of plants and animals with an eye toward understanding the world around us.

Relatedness was first described primarily as similarity in morphological characteristics: broad groupings of organisms were classified into orders, families and genera, much like one describes resemblance among one's extended family.

Early classification of organisms became more refined as developmental, physiological and behavioral observations were incorporated into these broad categories.

With the revelation of gene-based relationships, the search for an increasingly detailed understanding of genetic patterns became a driving force throughout all biological disciplines.

New technologies heralded new advances. "We have now arrived at an era in which genetically similar groups can be clustered quickly and at very low cost to effect a near-endless number of applications," says William Cresko, also a co-author of the PNAS paper.

Researchers can accurately describe genome-wide variation to shed light on evolution at the population level, to predict patterns of invasion of species during rapid climate change, and to correlate gene-based illnesses with susceptible human populations on a local or worldwide scale.

"The RAD-Tag protocol has increased the resolution of genetic relatedness among populations by 100-fold over previous molecular approaches," says Bradshaw.

"Along with the ability to illustrate the fine-scale phylogeographic patterns in species with few or no prior genomic resources," he says, "this technique will have applications in fields from ecology and evolution to human behavior and medicine."


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. J. Emerson, C. R. Merz, J. M. Catchen, P. A. Hohenlohe, W. A. Cresko, W. E. Bradshaw, C. M. Holzapfel. Resolving postglacial phylogeography using high-throughput sequencing. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1006538107

Cite This Page:

National Science Foundation. "Mosquitoes: Genetic structure of first animal to show evolutionary response to climate change determined." ScienceDaily. ScienceDaily, 5 September 2010. <www.sciencedaily.com/releases/2010/08/100824132357.htm>.
National Science Foundation. (2010, September 5). Mosquitoes: Genetic structure of first animal to show evolutionary response to climate change determined. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2010/08/100824132357.htm
National Science Foundation. "Mosquitoes: Genetic structure of first animal to show evolutionary response to climate change determined." ScienceDaily. www.sciencedaily.com/releases/2010/08/100824132357.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins