Featured Research

from universities, journals, and other organizations

Ant colonies shed light on metabolism

Date:
August 28, 2010
Source:
American Physiological Society
Summary:
Ants are usually regarded as the unwanted guests at a picnic. But a recent study of California seed harvester ants (Pogonomyrmex californicus) examining their metabolic rate in relation to colony size may lead to a better appreciation for the social, six-legged insects, whose colonies researchers say provide a theoretical framework for understanding cellular networks.

Pogonomyrmex californicus.
Credit: Courtesy of James Waters

Ants are usually regarded as the unwanted guests at a picnic. But a recent study of California seed harvester ants (Pogonomyrmex californicus) examining their metabolic rate in relation to colony size may lead to a better appreciation for the social, six-legged insects, whose colonies researchers say provide a theoretical framework for understanding cellular networks.

The Study

A team of researchers led by James Waters of Arizona State University in Tempe, Ariz. conducted a series of experiments designed to measure the components of ant metabolism, such as oxygen and carbon dioxide, in individual ants and in colonies of ants. The team studied 13 colonies of seed harvester ants taken from a nearby desert and housed in the university's research lab. By using flow-through respirometry and factors such as growth rates, patterns of movement, behavior and size, the team measured standard metabolic rates (i.e., energy expenditures) of the functioning colonies as well as in individual ants.

The researchers found that the metabolic rate of seed harvester ant colonies could not be predicted by adding and dividing the by-products of the metabolisms of all individual colony members. In fact, the colony as a whole produced only 75% of the by-products that its individual members would produce individually if each ant lived alone. Thus, the colonies' metabolism was less than the sum of all the individual ants' metabolisms.

The team also found that the larger the colony, the lower its overall metabolic rate. "Larger colonies consumed less energy per mass than smaller colonies," said Mr. Waters. "Size affects the scaling of metabolic rate for the whole colony."

Colony size appeared to influence patterns of behavior and the amount of energy individual ants spent. "In smaller colonies, more ants were moving fast, and there was a more even distribution of fast-moving ants," said Mr. Waters. "But in larger colonies, there were more ants that moved more slowly, and fewer that were moving really fast."

That the distribution of individual walking speeds became less uniform as colony size increased suggests that disparities in effort among individuals increased with colony size.

An Exciting Ratio

The 0.75 scaling exponent for colony metabolic rate strikes Mr. Waters as important because it indicates that colony metabolism is influenced in a way similar to what most individual organisms experience.

"As creatures go from small to large, their mass-specific metabolic rate decreases. It's a broad pattern in biology," he said. "When you graph these patterns, you can see how metabolism decreases as a creature gets bigger, and the exponent is usually near 0.75."

Yet a colony of ants experienced this decline as though it was one single "super-organism." Mr. Waters noted that the team isn't sure why this is so, but he has a few ideas.

"Ants need to stay in contact with each other in a colony, and it's possible that in larger colonies, certain ants take on the role of a network hub to keep the other ants in the colony more in touch with each other," he said. "That would relax the demand placed on the other ants."

He added that a larger size might afford a colony a division of labor not possible in a smaller colony. Individuals in a smaller colony would have to work harder to satisfy basic energy demands.

Implications

According to Mr. Waters, because ant colonies behave metabolically like individual organisms, studying how a colony's size changes its metabolism could offer useful insight for developing theories about medication dosage in humans.

"It's hard to figure out how size affects metabolic rate in individuals because it's not easy to change an individual's size," he said. "With an ant colony, it's as easy as adding or removing individual ants."

This is not to say that ant colonies function like individual humans. Rather, ant colonies could serve as a model for testing theories about the role of networks among cells in human metabolism.

"We've got this pattern where the larger an organism is, the slower its metabolism, and we don't really understand why," said Mr. Waters. "It's important to find out because we really don't have any sort of theoretical basis for deciding the right dose of medication. We can do charts on weight, and we can run tests on animals, but it's really more alchemy than science."

Mr. Waters presented his paper, Scaling of Metabolism, Growth and Network Organization in Colonies of the Seed Harvester Ant, Pogonomyrmex californicus, at the American Physiological Society's Intersociety Meeting Global Science: Comparative Physiology in a Changing World. The program is located at http://the-aps.org/meetings/aps/comparative/preprogram.htm.


Story Source:

The above story is based on materials provided by American Physiological Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physiological Society. "Ant colonies shed light on metabolism." ScienceDaily. ScienceDaily, 28 August 2010. <www.sciencedaily.com/releases/2010/08/100826141228.htm>.
American Physiological Society. (2010, August 28). Ant colonies shed light on metabolism. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2010/08/100826141228.htm
American Physiological Society. "Ant colonies shed light on metabolism." ScienceDaily. www.sciencedaily.com/releases/2010/08/100826141228.htm (accessed August 27, 2014).

Share This




More Plants & Animals News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Firefighters Rescue Puppy Stuck in Tire

Raw: Firefighters Rescue Puppy Stuck in Tire

AP (Aug. 26, 2014) It took Houston firefighters more than an hour to free a puppy who got its head stuck in a tire. (Aug. 26) Video provided by AP
Powered by NewsLook.com
Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Newsy (Aug. 26, 2014) A study published in the journal "Neurology" interviewed more than 19,000 people and found 15 percent suffer from being "sleep drunk." Video provided by Newsy
Powered by NewsLook.com
Great White Shark Spotted Off Massachusetts Coast

Great White Shark Spotted Off Massachusetts Coast

Reuters - US Online Video (Aug. 26, 2014) A great white shark is spotted off the shore at Duxbury beach in Massachusetts forcing beach goers out of the water. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Elk Wanders Into German Office Building

Raw: Elk Wanders Into German Office Building

AP (Aug. 25, 2014) A young bull elk wandered inside the office building of a company in Dresden, Germany on Monday. The elk became trapped between a wall and glass windows while rescue workers tried to rescue him safely. (Aug. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins