Featured Research

from universities, journals, and other organizations

Hybrid protein tools developed for gene cutting and editing

Date:
August 31, 2010
Source:
Iowa State University
Summary:
Researchers have developed a type of hybrid proteins that can make double-strand DNA breaks at specific sites in living cells, possibly leading to better gene replacement and gene editing therapies.

An Iowa State University team of researchers has developed a type of hybrid proteins that can make double-strand DNA breaks at specific sites in living cells, possibly leading to better gene replacement and gene editing therapies.

Related Articles


Bing Yang, assistant professor of genetics, development and cell biology, and his colleagues developed the hybrid protein by joining parts of two different bacterial proteins. One is called a TAL effector, which functions to find the specific site on the gene that needs to be cut, and the other is an enzyme called a nuclease that cuts the DNA strands.

Yang hopes the research will lead to the ability to modify genomes by cutting out defective or undesirable parts of DNA, or by replacing defective or undesirable gene segments with a functioning piece of replacement DNA -- a process called homologous recombination.

Yang says that his hybrid proteins can be constructed to locate specific segments of the DNA in any type of organism.

"This breakthrough could eventually make it possible to efficiently modify plant, animal and even human genomes," said Yang. "It should be effective in a range of organisms."

The proteins work by binding onto the specific segment of DNA the researcher wants to change. Yang's proteins do this by reading the DNA sequence and finding the specific area to be cut.

Once the protein binds onto the DNA at the correct spot, the other half of Yang's protein then cuts the double-stranded DNA.

Bad or undesirable DNA can be resected (removed) and good or more desirable DNA can be introduced. When the DNA heals, the good DNA is included in the gene.

Yang started his research about a year ago after seeing the results of research by Adam Bogdanove, ISU associate professor of plant pathology, showing that TAL effectors use a very straightforward code to bind to a specific DNA sequence.

This discovery allowed Yang to predict exactly where the TAL effector nuclease will bind on the DNA to make the cut.

Another study had similar results.

The concept has also been proven by Bogdanove and Dan Voytas, collaborator in genetics, development and cell biology at Iowa State, and director of the Center for Genome Engineering at the University of Minnesota, Twin Cities.

The TAL effector-nuclease approach improves on tools currently available for genome modification. It should be faster and less expensive to make TAL effector nucleases, and easier to design them to recognize specific DNA sequences, according to Yang.

Yang's findings recently appeared in the online version of the journal Nucleic Acids Research. Voytas' and Bogdanove's study also appeared recently in the journal Genetics.

Voytas and Bogdanove were also able to show that the TAL effector part of the hybrid protein can be customized to target new DNA sequences.

Yang's team includes Ting Li, graduate assistant; Sheng Huang, post doctoral researcher; David Wright, associate scientist; and Martin Spalding, professor and chair; all of the genetics, development and cell biology department at Iowa State; Wen Zhi Jiang, research associate; and Donald Weeks, professor; both from the University of Nebraska, Lincoln.


Story Source:

The above story is based on materials provided by Iowa State University. Note: Materials may be edited for content and length.


Cite This Page:

Iowa State University. "Hybrid protein tools developed for gene cutting and editing." ScienceDaily. ScienceDaily, 31 August 2010. <www.sciencedaily.com/releases/2010/08/100830114955.htm>.
Iowa State University. (2010, August 31). Hybrid protein tools developed for gene cutting and editing. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2010/08/100830114955.htm
Iowa State University. "Hybrid protein tools developed for gene cutting and editing." ScienceDaily. www.sciencedaily.com/releases/2010/08/100830114955.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins