Featured Research

from universities, journals, and other organizations

Scientists create new process to 'program' cancer cell death

Date:
September 8, 2010
Source:
California Institute of Technology
Summary:
Researchers have engineered a fundamentally new approach to killing cancer cells. The process uses small RNA molecules that can be programmed to attack only specific cancer cells; then, by changing shape, those molecules cause the cancer cells to self-destruct.

In lab-grown human brain, prostate, and bone cancer cells, small conditional RNAs (light and dark blue) bind to a targeted RNA cancer mutation (orange and green), triggering self-assembly of a long double-stranded RNA polymer that activates an innate immune response (gray turns to red) leading to cell death. No measurable reduction in numbers is observed for cells lacking targeted cancer mutations.
Credit: Suvir Venkataraman, William M. Clemons, Jr., Niles A. Pierce/Caltech

Researchers at the California Institute of Technology (Caltech) have engineered a fundamentally new approach to killing cancer cells. The process -- developed by Niles Pierce, associate professor of applied and computational mathematics and bioengineering at Caltech, and his colleagues -- uses small RNA molecules that can be programmed to attack only specific cancer cells; then, by changing shape, those molecules cause the cancer cells to self-destruct.

In conventional chemotherapy treatments for cancer, patients are given drugs that target cell behaviors typical of -- but not exclusive to -- cancer cells. For example, cancer drugs commonly attack cells that divide rapidly, because such accelerated division is a hallmark of most cancer cells. Unfortunately, rapid cell division is a property of normal cells in the bone marrow, digestive tract, and hair follicles, and so these cells are also killed, leading to a host of debilitating side effects.

A better method, says Pierce, is to create drugs that can first distinguish cancer cells from healthy cells and then, once those cells have been spotted, mark them for destruction; in other words, to produce molecules that diagnose cancer cells before eradicating them. This type of therapy could do away with the side effects associated with conventional chemotherapy treatments. It also could be tailored on a molecular level to individual cancers, making it uniquely specific.

In a paper slated to appear in the Proceedings of the National Academy of Sciences (PNAS), Pierce and his colleagues describe just such a process. It employs hairpin-shaped molecules known as small conditional RNAs, which are less than 30 base pairs in length. (An average gene is thousands of base pairs long.)

The researchers' method involves the use of two different varieties of small conditional RNA. One is designed to be complementary to, and thus to bind to, an RNA sequence unique to a particular cancer cell -- say, the cells of a glioblastoma, an aggressive brain tumor. In order to bind to that cancer mutation, the RNA hairpin must open -- changing the molecule from one form into another -- which, in turn, exposes a sequence that can spontaneously bind to the second type of RNA hairpin. The opening of the second hairpin then reveals a sequence that binds to the first type of hairpin, and so on.

In this way, detection of the RNA cancer marker triggers the self-assembly of a long double-stranded RNA polymer. As part of an innate antiviral immune response, human cells defend against infection using a protein called protein kinase R (PKR) to search for long double-stranded viral RNA, which should not be present in healthy human cells. If PKR indeed detects long double-stranded RNA within a cell, the protein triggers a cell-death pathway to eliminate the cell. "The small conditional RNAs trick cancer cells into self-destructing by selectively forming long double-stranded RNA polymers that mimic viral RNA," says Pierce. "There is, however, no virus."

Pierce and his colleagues tested the process on lab-grown human cells derived from three types of cancers: glioblastoma, prostate carcinoma, and Ewing's sarcoma (a type of bone tumor). "We used three different pairs of small conditional RNAs," with each pair designed to recognize a marker found in one of the three types of cancer, he explains. "The molecules caused a 20- to 100-fold drop in the numbers of cancer cells containing the targeted RNA cancer markers, but no measurable reduction in cells lacking the markers." For example, he explains, "drug 1 killed cancer 1 but not cancers 2 and 3, while drug 2 killed cancer 2 but not cancers 1 and 3, and drug 3 killed cancer 3 but not cancers 1 and 2."

"Conceptually," Pierce says, "small conditional RNAs provide a versatile framework for diagnosing and treating disease one cell at a time within the human body. However," he notes, "many years of work remain to establish whether the conceptual promise of small conditional RNAs can be realized in human patients."

The other coauthors of the paper, "Selective cell death mediated by small conditional RNAs," are Caltech research scientist Suvir Venkataraman and former Caltech graduate students Robert M. Dirks and Christine T. Ueda. The work was funded by the National Cancer Institute, the Elsa U. Pardee Foundation, the National Science Foundation's Molecular Programming Project, the Caltech Center for Biological Circuit Design, the Caltech Innovation Initiative, the Beckman Institute at Caltech, and a Caltech grubstake fund.


Story Source:

The above story is based on materials provided by California Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Suvir Venkataraman, Robert M. Dirks, Christine T. Ueda, Niles A. Pierce. Selective cell death mediated by small conditional RNAs. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1006377107

Cite This Page:

California Institute of Technology. "Scientists create new process to 'program' cancer cell death." ScienceDaily. ScienceDaily, 8 September 2010. <www.sciencedaily.com/releases/2010/09/100907104057.htm>.
California Institute of Technology. (2010, September 8). Scientists create new process to 'program' cancer cell death. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/09/100907104057.htm
California Institute of Technology. "Scientists create new process to 'program' cancer cell death." ScienceDaily. www.sciencedaily.com/releases/2010/09/100907104057.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins