Featured Research

from universities, journals, and other organizations

Structure for three intrinsically disordered proteins determined

Date:
September 8, 2010
Source:
Brown University
Summary:
A research team has determined the structure for three proteins in a class known as intrinsically disordered proteins. The findings are important because they show how these proteins fold with the regulator protein phosphatase-1, which must happen for biological instructions to be passed along.

Researchers used a variety of experimental, mathematical and observational techniques to ascertain how I-2, one of a class of poorly understood proteins known as intrinsically disordered proteins, binds with the regulator protein phosphatase 1.
Credit: Wolfgang Peti/Brown University

Most proteins are shapely. But about one-third of them lack a definitive form, at least that scientists can readily observe. These intrinsically disordered proteins (IDPs) perform a host of important biological functions, from muscle contraction to other neuronal actions. Yet despite their importance, "We don't know much about them," said Wolfgang Peti, associate professor of medical science and chemistry. "No one really worried about them."

Now, Peti, joined by researchers at the University of Toronto and at Brookhaven National Laboratory in New York, has discovered the structure of three IDPs -- spinophilin, I-2, and DARPP-32. Besides getting a handle on each protein's shape, the scientists present for the first time how these IDPs exist on their own (referred to as "free form") and what shape they assume when they latch on to protein phosphatase 1, known as "folding upon binding."

The findings are reported in the journal Structure.

Determining the IDPs' shape is important, Peti explained, because it gives molecular biologists insight into what happens when IDPs fold and regulate proteins, such as PP1, which must occur for biological instructions to be passed along.

"What we see is some amino acids don't have to change much, and some have to change a lot," Peti, a corresponding author on the paper, said. "That may be a signature how that (binding) interaction happens."

For two years, the researchers used a variety of techniques to ascertain each IDP's structure. With I-2, which instructs cells to divide, they used nuclear magnetic resonance spectroscopy to create ensemble calculations for the protein in its free and PP1-bound form. They confirmed I-2's binding interaction with PP1 (known as the PP1:I-2 complex) with the help of small-angle X-ray scattering measurements at the National Synchrotron Light Source, located at the Brookhaven lab.

The researchers did the same thing to determine the structure of spinophilin and DARPP-32 in their free-form state and to gain insights into their shapes when they bind with PP1.

"It's analogous to putting a sack cloth over a person," Peti explained. "You can't see the details, but you can get the overall shape. This is really a new way to create a structure model for highly dynamic complexes."

Julie Forman-Kay, a senior scientist at the Hospital for Sick Children in Toronto and a biochemistry professor at the University of Toronto, is a co-corresponding author on the paper. Other authors include Barbara Dancheck and Michael Ragusa, Brown graduate students; Joseph Marsh, a graduate student at the University of Toronto; and Marc Allaire, a biophysicist at the Brookhaven lab.

The U.S. National Institute of Neurological Disorders and Stroke, the Canadian Institutes for Health Research, the Natural Sciences and Engineering Research Council of Canada and the U.S. National Science Foundation Graduate Research Fellowship program funded the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joseph A. Marsh, Barbara Dancheck, Michael J. Ragusa, Marc Allaire, Julie D. Forman-Kay, Wolfgang Peti. Structural Diversity in Free and Bound States of Intrinsically Disordered Protein Phosphatase 1 Regulators. Structure, 2010; 18 (9): 1094-1103 DOI: 10.1016/j.str.2010.05.015

Cite This Page:

Brown University. "Structure for three intrinsically disordered proteins determined." ScienceDaily. ScienceDaily, 8 September 2010. <www.sciencedaily.com/releases/2010/09/100908121907.htm>.
Brown University. (2010, September 8). Structure for three intrinsically disordered proteins determined. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/09/100908121907.htm
Brown University. "Structure for three intrinsically disordered proteins determined." ScienceDaily. www.sciencedaily.com/releases/2010/09/100908121907.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins