Featured Research

from universities, journals, and other organizations

How molecules escape from cell's nucleus: Key advance in using microscopy to reveal secrets of living cells

Date:
September 27, 2010
Source:
Albert Einstein College of Medicine
Summary:
By constructing a microscope apparatus that achieves resolution never before possible in living cells, researchers have illuminated the molecular interactions that occur during one of the most important "trips" in all of biology: the journey of individual messenger ribonucleic acid (RNA) molecules from the nucleus into the cytoplasm (the area between the nucleus and cell membrane) so that proteins can be made.

Real-Time mRNA Export: Messenger RNA molecules (green structures) passing through the nuclear pore (red) from the nucleus to the cytoplasm.
Credit: Image copyright Tremani / Courtesy of Albert Einstein College of Medicine

By constructing a microscope apparatus that achieves resolution never before possible in living cells, researchers at Albert Einstein College of Medicine of Yeshiva University have illuminated the molecular interactions that occur during one of the most important "trips" in all of biology: the journey of individual messenger Ribonucleic acid (RNA) molecules from the nucleus into the cytoplasm (the area between the nucleus and cell membrane) so that proteins can be made.

The results, published in the September 15 online edition of Nature, mark a major advance in the use of microscopes for scientific investigation (microscopy). The findings could lead to treatments for disorders such as myotonic dystrophy in which messenger RNA gets stuck inside the nucleus of cells.

Robert Singer, Ph.D., professor and co-chair of anatomy and structural biology, professor of cell biology and neuroscience and co-director of the Gruss-Lipper Biophotonics Center at Einstein, is the study's senior author. His co-author, David Grόnwald, is at the Kavli Institute of Nanoscience at Delft University of Technology, The Netherlands. Prior to their work, the limit of microscopy resolution was 200 nanometers (billionths of a meter), meaning that molecules closer than that could not be distinguished as separate entities in living cells. In this paper, the researchers improved that resolution limit by 10 fold, successfully differentiating molecules only 20 nanometers apart.

Protein synthesis is arguably the most important of all cellular processes. The instructions for making proteins are encoded in the Deoxyribonucleic acid (DNA) of genes, which reside on chromosomes in the nucleus of a cell. In protein synthesis, DNA instructions of a gene are transcribed, or copied, onto messenger RNA; these molecules of messenger RNA must then travel out of the nucleus and into the cytoplasm, where amino acids are linked together to form the specified proteins.

Molecules shuttling between the nucleus and cytoplasm are known to pass through protein complexes called nuclear pores. After tagging messenger RNA molecules with a yellow fluorescent protein (which appears green in the accompanying image) and tagging the nuclear pore with a red fluorescent protein, the researchers used high-speed cameras to film messenger RNA molecules as they traveled across the pores. The Nature paper reveals the dynamic and surprising mechanism by which nuclear pores "translocate" messenger RNA molecules from the nucleus into the cytoplasm: this is the first time their pore transport has been seen in living cells in real time.

"Up until now, we'd really had no idea how messenger RNA travels through nuclear pores," said Dr. Singer. "Researchers intuitively thought that the squeezing of these molecules through a narrow channel such as the nuclear pore would be the slow part of the translocation process. But to our surprise, we observed that messenger RNA molecules pass rapidly through the nuclear pores, and that the slow events were docking on the nuclear side and then waiting for release into the cytoplasm."

More specifically, Dr. Singer found that single messenger RNA molecules arrive at the nuclear pore and wait for 80 milliseconds (80 thousandths of a second) to enter; they then pass through the pore breathtakingly fast -- in just 5 milliseconds; finally, the molecules wait on the other side of the pore for another 80 milliseconds before being released into the cytoplasm.

The waiting periods observed in this study, and the observation that 10 percent of messenger RNA molecules sit for seconds at nuclear pores without gaining entry, suggest that messenger RNA could be screened for quality at this point.

"Researchers have speculated that messenger RNA molecules that are defective in some way, perhaps because the genes they're derived from are mutated, may be inspected and destroyed before getting into the cytoplasm or a short time later, and the question has been, 'Where might that surveillance be happening?'," said Dr. Singer. "So we're wondering if those messenger RNA molecules that couldn't get through the nuclear pores were subjected to a quality control mechanism that didn't give them a clean bill of health for entry."

In previous research, Dr. Singer studied myotonic dystrophy, a severe inherited disorder marked by wasting of the muscles and caused by a mutation involving repeated DNA sequences of three nucleotides. Dr. Singer found that in the cells of people with myotonic dystrophy, messenger RNA gets stuck in the nucleus and can't enter the cytoplasm. "By understanding how messenger RNA exits the nucleus, we may be able to develop treatments for myotonic dystrophy and other disorders in which messenger RNA transport is blocked," he said.

The paper, "In Vivo Imaging of Labelled Endogenous β-actin mRNA during Nucleocytoplasmic Transport," was published in the September 15 online edition of Nature.


Story Source:

The above story is based on materials provided by Albert Einstein College of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. David Grόnwald, Robert H. Singer. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature, 2010; DOI: 10.1038/nature09438

Cite This Page:

Albert Einstein College of Medicine. "How molecules escape from cell's nucleus: Key advance in using microscopy to reveal secrets of living cells." ScienceDaily. ScienceDaily, 27 September 2010. <www.sciencedaily.com/releases/2010/09/100915140121.htm>.
Albert Einstein College of Medicine. (2010, September 27). How molecules escape from cell's nucleus: Key advance in using microscopy to reveal secrets of living cells. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/09/100915140121.htm
Albert Einstein College of Medicine. "How molecules escape from cell's nucleus: Key advance in using microscopy to reveal secrets of living cells." ScienceDaily. www.sciencedaily.com/releases/2010/09/100915140121.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) — The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins