Featured Research

from universities, journals, and other organizations

Chromosome imbalances lead to predictable plant defects

Date:
November 4, 2010
Source:
Purdue University
Summary:
Physical defects in plants can be predicted based on chromosome imbalances, a finding that may shed light on how the addition or deletion of genes and the organization of the genome affects organisms, according to a new study.

Brian Dilkes was part of a team that determined that plant physical defects can be predicted based on chromosome imbalances.
Credit: Purdue Agricultural Communication photo/Tom Campbell

Physical defects in plants can be predicted based on chromosome imbalances, a finding that may shed light on how the addition or deletion of genes and the organization of the genome affects organisms, according to a study involving a Purdue University researcher.

The findings identify easily measured characteristics that vary with imbalances of specific chromosomes, said Brian Dilkes, a Purdue assistant professor of horticulture. Understanding why and how those imbalances result in certain characteristics could open the door to correcting those defects in not only plants, but also in animals and humans.

A classic example in humans is in Down syndrome, which is caused by an extra copy of chromosome 21.

"The ability of an organism to replicate and pass on all its genes is incredibly important," Dilkes said. "What we've found is that genes are sensitive to their dose relative to the rest of the genome. When that balance is disrupted, the organisms fail."

In plants, an imbalance in chromosome number can cause defects in stems, leaves, flowers and other physical features. Understanding how those imbalances cause changes could allow scientists to manipulate plant traits to increase biomass for fuels or other purposes.

"By learning the rules, we can predict the outcome of adding or deleting a gene from an organism," Dilkes said. "We see predictable physical consequences for variation in chromosome dosages. This problem is tractable."

Dilkes, a co-author of the findings released in the early online version of the journal Genetics, was part of a team as a project scientist at the University of California-Davis Genome Center that studied chromosome dosage in the research plant Arabidopsis thaliana. The team used naturally occurring and laboratory-created plants with multiple copies of each chromosome, called polyploids, and then crossed them to create aneuploids, or plants with an irregular number of chromosomes.

The aneuploids, which had either an excess or deficiency of a chromosome, were tested to see which chromosomes were deficient or excessive. Those plants were then phenotyped, recording their physical characteristics. The phenotypes and chromosome imbalances were compared, and it became clear that more or less of particular chromosomes corresponded to specific phenotypic characteristics.

Plants with excess chromosome 1 and a deficiency of chromosome 3 had increased stem diameter, for example. To test the finding, plants were created that had both an excess of chromosome 1 and were deficient in chromosome 3, and stem diameter grew as predicted.

In a surprising turn, the team found that chromosomal imbalance resulted in abnormal traits expressed in its offspring. Plants with a normal number of chromosomes that were descended from plants with chromosome imbalances should have been normal but still displayed abnormal characteristics.

"Something about those chromosomes is different," Dilkes said. "We have no idea what that something is, but it suggests there are multigenerational consequences to changes in chromosome dosage. The DNA sequence says these plants should be perfectly normal, but they are not."

Dilkes said future research would focus on chromosome imbalances in crop plants such as corn and trying to understand how the excess or deficiency of a gene leads to a particular phenotypic characteristic.

The National Science Foundation funded the research.


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Brian Wallheimer. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. M. Henry, B. P. Dilkes, E. S. Miller, D. Burkart-Waco, L. Comai. Phenotypic Consequences of Aneuploidy in Arabidopsis thaliana. Genetics, 2010; DOI: 10.1534/genetics.110.121079

Cite This Page:

Purdue University. "Chromosome imbalances lead to predictable plant defects." ScienceDaily. ScienceDaily, 4 November 2010. <www.sciencedaily.com/releases/2010/11/101103135338.htm>.
Purdue University. (2010, November 4). Chromosome imbalances lead to predictable plant defects. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/11/101103135338.htm
Purdue University. "Chromosome imbalances lead to predictable plant defects." ScienceDaily. www.sciencedaily.com/releases/2010/11/101103135338.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins