Featured Research

from universities, journals, and other organizations

Insects learn to choose the right mate

Date:
November 5, 2010
Source:
Lund University
Summary:
Researchers have shown that damselflies learn how to choose the right mate when two species co-exist locally. The choice of mate is not only a matter of genetic and instinctive behavior, as has often been assumed for such small and short-lived creatures.

Banded demoiselle sitting on a leaf. Researchers from Lund University have shown that damselflies learn how to choose the right mate when two species co-exist locally. The choice of mate is not only a matter of genetic and instinctive behaviour, as has often been assumed for such small and short-lived creatures.
Credit: iStockphoto/Per Christensen

Researchers from Lund University have shown that damselflies learn how to choose the right mate when two species co-exist locally. The choice of mate is not only a matter of genetic and instinctive behaviour, as has often been assumed for such small and short-lived creatures.

Related Articles


"It is fascinating to see that even small insects can learn these things," says Professor Erik Svensson at the Department of Biology at Lund University.

Erik Svensson and his fellow researchers at Lund University have studied two co-existing species of damselfly (called "demoiselles," belonging to the genus Calopteryx). Damselflies belong to a group of insects called odonates, together with the more familiar dragonflies. The researchers have investigated the mechanisms by which females choose males with whom to mate. The main difference between the two species in terms of appearance is the amount of black on the males' wings. The females therefore have to keep an eye on the wing colour if they are to mate with males of their own species, i.e. the correct mates.

"If a female mates with a male of the wrong species, she essentially throws away her eggs, because mating between species leads to few offspring," says Erik Svensson.

The researchers have studied the mating behaviour of the damselflies at several different locations in southern Sweden. At some of the sites the two species live alongside one another. At these sites, the females reject the males of the other species. However, at other sites, only one of the species is present. There, the females showed much greater interest in males of the other species when they were presented to the females in a field experiment. The females at these sites were clearly not aware of the fact that these novel males were the wrong species when they came into contact with them for the first time.

"It is interesting that the females at the different sites behave very differently, despite the fact that the different sites are not far from one another," says Erik Svensson.

If the choice of mate was only a genetic (inherited) behaviour, the differences between the sites should not be as dramatic, because dispersal of individuals and the resulting gene flow between sites should erase such strong differences in mating behaviour. This prompted the researchers to carry out additional field experiments to investigate whether young and sexually inexperienced females learn to recognise males of their own species.

Newly hatched and sexually inexperienced female damselflies were captured in the field and kept isolated in cages without any contact with males. When these virgin females then came into contact with males of both species for the first time, they showed equal interest in the males of both species. In another experiment, newly hatched females were again kept isolated in cages, but were able to see males of their own species for a while, yet without physical contact. When these females were subsequently exposed to physical contact with the males, they developed a stronger interest in their own species and showed a reduced interest in males of the other species.

"Our experiments clearly show that the choice of mate is learnt and not merely genetic. However, we don't yet understand the learning mechanisms or exactly what happens during the short learning time of just a few hours," says Erik Svensson. "We are planning further experiments in the future to investigate these learning mechanisms."

The research results have been published in the scientific journal Evolution.

The species studied are the banded demoiselle (Calopteryx splendens) and the beautiful demoiselle (Calopteryx virgo).


Story Source:

The above story is based on materials provided by Lund University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erik I. Svensson, Fabrice Eroukhmanoff, Kristina Karlsson, Anna Runemark, Anders Brodin. A Role for Learning in Population Divergence of Mate Preferences. Evolution, 2010; DOI: 10.1111/j.1558-5646.2010.01085.x

Cite This Page:

Lund University. "Insects learn to choose the right mate." ScienceDaily. ScienceDaily, 5 November 2010. <www.sciencedaily.com/releases/2010/11/101104083100.htm>.
Lund University. (2010, November 5). Insects learn to choose the right mate. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2010/11/101104083100.htm
Lund University. "Insects learn to choose the right mate." ScienceDaily. www.sciencedaily.com/releases/2010/11/101104083100.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins