Featured Research

from universities, journals, and other organizations

New method for simple fabrication of microperforated membranes

Date:
November 10, 2010
Source:
American Institute of Physics
Summary:
Microscopically porous polymer membranes have numerous applications in microfluidics, where they can act as filters, masks for surface patterning, and even as components in 3-D devices. A simple new method allows chemists to fabricate free-standing polymer membranes with neatly patterned holes as small as 10 microns.

Microscopically porous polymer membranes have numerous applications in microfluidics, where they can act as filters, masks for surface patterning, and even as components in 3D devices in which the perforations in stacked membranes are aligned to form networks of channels for the flow of fluids.

In the AIP journal Biomicrofluidics, Hongkai Wu, a chemist at Hong Kong University of Science and Technology, and his colleagues describe a simple new method using just one photolithographic step to fabricate free-standing polymer membranes with neatly patterned holes as small as 10 microns in diameter.

The researchers start by designing the desired pattern on a computer and printing it on a transparency (for holes larger than 20 microns in diameter) or a chrome mask (for those smaller than 20 microns). "Then," Wu says, "we place two spacers on a flat substrate and between them add a few drops of a prepolymer" -- a molecule that can form into a polymer. The prepolymer is covered with the mask, which is pressed down onto the spacers; ultraviolet light is then used to cure the membrane. The mask is then removed to reveal the free-standing, perforated membrane.

"Because our technique can fabricate membranes of pores with accurate sizes and in arbitrary shapes and sizes, and the fabrication is very easy and fast, we expect them to have many potential applications in different fields," says Wu. "These membranes can be directly used as masks to pattern inorganic, organic, and biological materials like proteins and cells, on various surfaces," he says.

"One important application of the membrane is that it makes it very simple to fabricate 3D microfluidic structures with channels running up and down through the membrane, which are difficult to make otherwise."


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yizhe Zheng, Wen Dai, Declan Ryan, Hongkai Wu. Fabrication of freestanding, microperforated membranes and their applications in microfluidics. Biomicrofluidics, 2010; 4 (3): 036504 DOI: 10.1063/1.3491474

Cite This Page:

American Institute of Physics. "New method for simple fabrication of microperforated membranes." ScienceDaily. ScienceDaily, 10 November 2010. <www.sciencedaily.com/releases/2010/11/101109095316.htm>.
American Institute of Physics. (2010, November 10). New method for simple fabrication of microperforated membranes. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/11/101109095316.htm
American Institute of Physics. "New method for simple fabrication of microperforated membranes." ScienceDaily. www.sciencedaily.com/releases/2010/11/101109095316.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins