Featured Research

from universities, journals, and other organizations

Drugs can pass through human body almost intact: New concerns for antibiotic resistance, pollution identified

Date:
December 7, 2010
Source:
Virginia Tech
Summary:
When an antibiotic is consumed, researchers have learned that up to 90 percent passes through a body without metabolizing. This means the drugs can leave the body almost intact through normal bodily functions.

Virginia Tech associate professor of civil and environmental engineering Amy Pruden explained that reducing the spread of antibiotic resistance is a critical measure needed to prolong the effectiveness of currently available antibiotics.
Credit: Virginia Tech Photo

When an antibiotic is consumed, researchers have learned that up to 90 percent passes through a body without metabolizing. This means the drugs can leave the body almost intact through normal bodily functions.

In the case of agricultural areas, excreted antibiotics can then enter stream and river environments through a variety of ways, including discharges from animal feeding operations, fish hatcheries, and nonpoint sources such as the flow from fields where manure or biosolids have been applied. Water filtered through wastewater treatment plants may also contain used antibiotics.

Consequently, these discharges become "potential sources of antibiotic resistance genes," says Amy Pruden, a National Science Foundation CAREER Award recipient, and an assistant professor of civil and environmental engineering at Virginia Tech.

"The presence of antibiotics, even at sub-inhibitory concentrations, can stimulate bacterial metabolism and thus contribute to the selection and maintenance of antibiotic resistance genes," Pruden explains. "Once they are present in rivers, antibiotic resistance genes are capable of being transferred among bacteria, including pathogens, through horizontal gene transfer."

The World Health Organization and the Center for Disease Control recognize antibiotic resistance "as a critical health challenge of our time," Pruden writes in a paper published in a 2010 issue of Environmental Science and Technology.

Pruden says reducing the spread of antibiotic resistance is a critical measure needed to prolong the effectiveness of currently available antibiotics. This is important since "new drug discovery can no longer keep pace with emerging antibiotic-resistant infections," Pruden says.

Pruden who has developed the concept of antibiotic resistance genes as environmental pollutants has an international reputation in applied microbial ecology, environmental remediation, and environmental reservoirs of antimicrobial resistance.

In her work outlined in the Environmental Science and Technology article, she and her co-authors, H. Storteboom, M. Arabi and J.G. Davis, all of Colorado State University, and B. Crimi of Delft University in The Netherlands, identified specific patterns of antibiotic resistance gene occurrence in a Colorado watershed. Identification of these patterns represents a major step in being able to discriminate between agricultural and wastewater treatment plant sources of these genes in river environments.

They assert that such unique patterns of antibiotic resistance gene occurrence represent promising molecular signatures that may then be used as tracers of specific manmade sources.

In their study they identified three wastewater treatment plant sites, six animal feeding operation locations, and three additional locations along a pristine region of the Poudre River, in an upstream section located in the Rocky Mountains. They compared the frequency of detection of 11 sulfonamide and tetracycline antibiotic resistance genes.

Their findings showed detection of one particular antibiotic resistance gene in 100 percent of the treatment plant and animal feeding operations, but only once in the clean section of the Poudre River.

As they are able to differentiate between human and animal sources of the antibiotic resistance genes, Pruden and her colleagues believe they can "shed light on areas where intervention can be most effective in helping to reduce the spread of these contaminants through environmental matrixes such as soils, groundwater, surface water and sediments.

"This study advances the recognition of antibiotic resistance genes as sources to impacted environments, taking an important step in the identification of the dominant processes of the spreading and transport of antibiotic resistance genes."

The Colorado Water Resources Research Institute and a USDA Agricultural Experiment Station provided funding for this study in addition to Pruden's NSF award.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. Heather Storteboom, Mazdak Arabi, Jessica G. Davis, Barbara Crimi, Amy Pruden. Tracking Antibiotic Resistance Genes in the South Platte River Basin Using Molecular Signatures of Urban, Agricultural, And Pristine Sources. Environmental Science & Technology, 2010; 44 (19): 7397 DOI: 10.1021/es101657s

Cite This Page:

Virginia Tech. "Drugs can pass through human body almost intact: New concerns for antibiotic resistance, pollution identified." ScienceDaily. ScienceDaily, 7 December 2010. <www.sciencedaily.com/releases/2010/12/101207112402.htm>.
Virginia Tech. (2010, December 7). Drugs can pass through human body almost intact: New concerns for antibiotic resistance, pollution identified. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2010/12/101207112402.htm
Virginia Tech. "Drugs can pass through human body almost intact: New concerns for antibiotic resistance, pollution identified." ScienceDaily. www.sciencedaily.com/releases/2010/12/101207112402.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins