Featured Research

from universities, journals, and other organizations

Assessing the seismic hazard of the central eastern United States

Date:
December 13, 2010
Source:
Virginia Tech
Summary:
As the US policymakers renew emphasis on the use of nuclear energy in their efforts to reduce the country's oil dependence, other factors come into play. One concern of paramount importance is the seismic hazard at the site where nuclear reactors are located.

Virginia Tech associate professor of civil and environmental engineering Russell Green focuses on the study of paleoseismology to achieve a greater understanding of the probability of seismic events.
Credit: Provided by Virginia Tech

As the U.S. policy makers renew emphasis on the use of nuclear energy in their efforts to reduce the country's oil dependence, other factors come into play. One concern of paramount importance is the seismic hazard at the site where nuclear reactors are located.

Related Articles


Russell A. Green, associate professor of civil and environmental engineering at Virginia Tech, spent five years as an earthquake engineer for the U.S. Defense Nuclear Facilities Safety Board in Washington, D.C., prior to becoming a university professor. Part of his responsibility at the safety board was to perform seismic safety analyses on the nation's defense nuclear facilities.

"I found the greatest uncertainty in seismic analyses was related to the ground motions used in the analyses…Many of the facilities being analyzed were already built and operating, and the facilities were already heavily contaminated with radioactive material," Green said.

An immediate concern then became how and which buildings to retrofit. The balance in the decision-making process was between using overly conservative ground motions and potentially wasting "hundreds of millions of dollars in unnecessary retrofits" versus using less demanding motions and potentially "placing facility workers, neighboring towns, and cities at risk," Green added.

Green's concerns and expertise in earthquake engineering earned him a National Science Foundation CAREER Award in 2006 valued at more than $400,000. He has used this support for the development of procedures for collecting and analyzing data required for assessing the seismic hazard in regions where moderate to large earthquakes would have significant consequences, yet they remain low probability events.

Green said a "huge shift" in the engineering profession's approach to reducing seismic risk has occurred during the past decade. Building codes have been modified to include performance-based earthquake engineering (PBEE) concepts. This differs from the previous traditional design approach that used "life safety as the primary design goal," Green explained. "PBEE is based on the premise that performance can be predicted and evaluated with quantifiable confidence, allowing the engineer, together with the client, to make intelligent and informed trade-offs based on life-cycle considerations rather than construction costs alone."

To implement PBEE and to calculate the annual probability of specific losses due to seismic events, engineers need to know the fragility of structural systems and the probabilistically quantified seismic hazard.

To conduct his research, Green is focusing on paleoseismology, the study of the timing, location, and size of prehistoric/pre-instrumental earthquakes, ranging from those that occurred hundreds to tens of thousands of years ago.

"I believe that earthquake engineering encompasses geology, seismology, geotechnical engineering, structural engineering, urban planning, and emergency response, " Green said.

"The appropriate selection of ground motions is particularly difficult because many critical facilities are located in the central and eastern U.S. and in the Pacific Northwest," Green said. "We know moderate to large earthquakes have occurred in these regions. We just do not know how large the events were, how often they occurred, or the characteristics of the associated ground shaking, such as duration, amplitude, and frequency content."

Unlike many places in the western U.S. where excavations can be used to determine the past movement on earthquake faults, in the central-eastern U.S. the locations of most faults are unknown and/or the faults are too deep to excavate. As a result, Green is concentrating his work on the development and validation of paleoliquefaction procedures. Soil liquefaction is the transition of soil from a solid to a liquefied state. Earthquakes are one cause of liquefaction, with the evidence of liquefaction often remaining in the soil profile for many thousands of years after the earthquake.

"Paleoliquefaction investigations are the most plausible way to determine the recurrence time of moderate to large earthquakes in the central-eastern U.S. ," Green said. "By extending the earthquake record into prehistoric times, paleoseismic investigations remove one of the major obstacles to implementing PBEE across the U.S."

To determine the age of a paleoliquefaction feature, researchers might use any one of a number of techniques, including: radiocarbon dating, optically stimulated luminescence, or archeological evidence.

Green said his work will address the "gaps in knowledge that typically stem from uncertainties related to analytical techniques used in back-calculations, the amount and quantity of paleoliquefaction data, and the significance of changes in the geotechnical properties of post-liquefied sediments such as aging and density changes."

In addition to his work studying paleoearthquakes, Green has also been involved in performing field studies of several recent earthquakes. He has performed post-earthquake field studies of the 2008 Mt. Carmel, Ill., magnitude 5.2 earthquake, the 2008 Iwate Miyagi-Nairiku, Japan, magnitude 6.9 earthquake, the 2010 Haiti, magnitude 7.0 earthquake, and the 2010 Darfield, New Zealand, magnitude 7.1 earthquake. The latter two field studies were National Science Foundation sponsored Geo-Engineering Extremes Events Reconnaissance (GEER) investigations, with Green serving as the US Team leader for the Darfield earthquake study.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Assessing the seismic hazard of the central eastern United States." ScienceDaily. ScienceDaily, 13 December 2010. <www.sciencedaily.com/releases/2010/12/101210100904.htm>.
Virginia Tech. (2010, December 13). Assessing the seismic hazard of the central eastern United States. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2010/12/101210100904.htm
Virginia Tech. "Assessing the seismic hazard of the central eastern United States." ScienceDaily. www.sciencedaily.com/releases/2010/12/101210100904.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

Going Ape: Sierra Leone Chimpanzees Hail Ebola Retreat

AFP (Apr. 21, 2015) As money runs out at Tacugama Chimpanzee Sanctuary in Sierra Leone, around 85 chimps are facing homelessness. The centre closed when the Ebola epidemic was ravaging the country but now that closure is beginning to look permanent. Video provided by AFP
Powered by NewsLook.com
Wild Weather Lashes Sydney Region

Wild Weather Lashes Sydney Region

AFP (Apr. 21, 2015) Sydney and surrounding areas are lashed by wild weather with trees felled, power cuts hitting thousands of homes and sand drifts sweeping inland off the iconic Bondi beach. Duration: 00:50 Video provided by AFP
Powered by NewsLook.com
Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins