Featured Research

from universities, journals, and other organizations

Biological computers: Genetically modified cells communicate like electronic circuits

Date:
December 14, 2010
Source:
University of Gothenburg
Summary:
Genetically modified cells can be made to communicate with each other as if they were electronic circuits. Using yeast cells, a group of researchers has taken a groundbreaking step towards being able to build complex systems in the future where the body's own cells help to keep us healthy.

Genetically modified cells can be made to communicate with each other as if they were electronic circuits.
Credit: University of Gothenburg

Genetically modified cells can be made to communicate with each other as if they were electronic circuits. Using yeast cells, a group of researchers at the University of Gothenburg, Sweden, has taken a groundbreaking step towards being able to build complex systems in the future where the body's own cells help to keep us healthy. The study was presented recently in an article in the scientific journal Nature.

Related Articles


"Even though engineered cells can't do the same job as a real computer, our study paves the way for building complex constructions from these cells," says Kentaro Furukawa at the University of Gothenburg's Department of Cell- and Molecular Biology, one of the researchers behind the study. "In the future we expect that it will be possible to use similar cell-to-cell communication systems in the human body to detect changes in the state of health, to help fight illness at an early stage, or to act as biosensors to detect pollutants in connection with our ability to break down toxic substances in the environment."

Combining biology and technology

Synthetic biology is a relatively new area of research. One application is the design of biological systems that are not found in nature. For example, researchers have successfully constructed a number of different artificial connections within genetically modified cells, such as circuit breakers, oscillators and sensors.

Some of these artificial networks could be used for industrial or medical applications. Despite the huge potential for these artificial connections, there have been many technical limitations to date, mainly because the artificial systems in individual cells rarely work as expected, which has a major impact on the results.

Biotechnology challenges the world of computers

Using yeast cells, the research team at the University of Gothenburg has now produced synthetic circuits based on gene-regulated communication between cells. The yeast cells have been modified genetically so that they sense their surroundings on the basis of set criteria and then send signals to other yeast cells by secreting molecules. The various cells can thus be combined like bricks of Lego to produce more complicated circuits. Using a construction of yeast cells with different genetic modifications, it is possible to carry out more complicated "electronic" functions than would be the case with just one type of cells.

The University of Gothenburg research team is headed by professor Stefan Hohmann, and also comprises Kentaro Furukawa and Jimmy Kjellén.

The article Distributed biological computation with multicellular engineered networks, published in the scientific journal Nature on 8 December, was the result of a partnership with two Spanish research teams at Universitat Pompeu Fabra in Barcelona. The work forms part of the EU CELLCOMPUT project.


Story Source:

The above story is based on materials provided by University of Gothenburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sergi Regot, Javier Macia, Núria Conde, Kentaro Furukawa, Jimmy Kjellén, Tom Peeters, Stefan Hohmann, Eulàlia de Nadal, Francesc Posas, Ricard Solé. Distributed biological computation with multicellular engineered networks. Nature, 2010; DOI: 10.1038/nature09679

Cite This Page:

University of Gothenburg. "Biological computers: Genetically modified cells communicate like electronic circuits." ScienceDaily. ScienceDaily, 14 December 2010. <www.sciencedaily.com/releases/2010/12/101214122850.htm>.
University of Gothenburg. (2010, December 14). Biological computers: Genetically modified cells communicate like electronic circuits. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2010/12/101214122850.htm
University of Gothenburg. "Biological computers: Genetically modified cells communicate like electronic circuits." ScienceDaily. www.sciencedaily.com/releases/2010/12/101214122850.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) — A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) — A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) — The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) — Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins