Featured Research

from universities, journals, and other organizations

'Timing is everything' in ensuring healthy brain development

Date:
January 6, 2011
Source:
Newcastle University
Summary:
Connections made in our brains during the early years of our life could be the key to healthy mental development, scientists have found.

Still image from an animation showing the growth of the neuronal network with neurons being added at each stage.
Credit: Image courtesy of Newcastle University

Work published shows that brain cells need to create links early on in their existence, when they are physically close together, to ensure successful connections across the brain throughout life.

Related Articles


In people, these long-distance connections enable the left and right side of the brain to communicate and integrate different kinds of information such as sound and vision. A change in the number of these connections has been found in many developmental brain disorders including autism, epilepsy and schizophrenia.

The Newcastle University researchers Dr Marcus Kaiser and Mrs Sreedevi Varier carried out a sophisticated computer analysis relating birth-time associated data to connectivity patterns of nerve cells in the roundworm, Caenorhabditis elegans. They demonstrated that when two nerve cells develop close together, they form a connection which then stretches out when the two nerve cells move apart as the organism grows. This creates a link across the brain known as a long-distance connection.

Publishing in PLoS Computational Biology, the researchers have demonstrated for the first time that this is the most frequent successful mechanism by which long distance connections are made.

Dr Marcus Kaiser, at Newcastle University, says: "You can draw parallels with childhood friendships carrying on into adulthood. For example, two children living close to each other could become friends through common activities like school or playing at the park. The friendship can last even if one of them moves further away, while, beginning a lasting friendship with someone already far away, is much more difficult."

Mrs Sreedevi Varier adds: "Although it's too early for this research to have direct clinical applications, it adds to our understanding of the structural changes in the brain and raises some interesting questions as to how these connections can become faulty. In further studying this mechanism, we may eventually contribute towards insights into the diagnosis and possibly the treatment of patients with epilepsy and autism."

It has long been understood that the first connections in the brain created in the early days of development can be formed over long distances using guidance signals to direct nerve fibres to their correct positions -- known as axonal guidance. Subsequently, other connections can follow those pioneer fibres to a target location creating connections between distant parts of the brain. Through these long-distance connections different kinds of information, such as sound and vision, can be integrated.

This EPSRC-funded research showed that most neurons are able to create a connection early on in their development when they were physically close together, potentially giving them more time to host and establish connections. These developed into a long-distance connection, the two cells pulling apart as the organism grows larger.

Studying the connections in the neuronal network of the roundworm Caenorhabditis elegans the Newcastle scientists -- who are also affiliated with Seoul National University, Korea -- found that most neurons with a long-distance connection had developed in this way.

This new mechanism differs from the previous model for long-distance connectivity. An axon is a fibre that is extended from one nerve cell and, after travelling through the tissue, can contact several other nerve cells. Normally, axons would grow in a straight line. For several targets, however, the axon has to travel around obstacles, as a straight connection is not possible. In such cases, cells along the way can release guidance cues that either attract or repulse the travelling axon. One example of bended fibres is the visual pathway that at several points takes a sharp 90-degree turn to arrive at the correct target position.

Instead, establishing potential links early on when neurons are spatially nearby might reduce the need for such guidance cues. This reduces costs in producing guidance cues but potentially also for genetically encoding a wider range of cues. An early mechanism opens up the possibility that changes in long-distance brain connectivity, that are observed in children and young adults with brain disorders, arise earlier during brain development than previously thought. These are questions that the team continue to work on through data analysis and computer simulations of brain development.


Story Source:

The above story is based on materials provided by Newcastle University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sreedevi Varier, Marcus Kaiser. Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network. PLoS Computational Biology, 2011; 7 (1): e1001044 DOI: 10.1371/journal.pcbi.1001044

Cite This Page:

Newcastle University. "'Timing is everything' in ensuring healthy brain development." ScienceDaily. ScienceDaily, 6 January 2011. <www.sciencedaily.com/releases/2011/01/110106192029.htm>.
Newcastle University. (2011, January 6). 'Timing is everything' in ensuring healthy brain development. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/01/110106192029.htm
Newcastle University. "'Timing is everything' in ensuring healthy brain development." ScienceDaily. www.sciencedaily.com/releases/2011/01/110106192029.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins