Featured Research

from universities, journals, and other organizations

Scientists view genome as it turns on and off inside cells

Date:
January 20, 2011
Source:
University of California - San Francisco
Summary:
Researchers have developed a new approach to decoding the vast information embedded in an organism's genome, while shedding light on exactly how cells interpret their genetic material to create RNA messages and launch new processes in the cell.

By combining biochemical techniques with new, fast DNA-sequencing technology and advanced computer technology, the team was able to examine with unprecedented resolution how a cell converts DNA into RNA -- a molecular cousin of DNA that is used in the process of creating proteins that govern most biological functions.
Credit: Image courtesy of University of California - San Francisco

UCSF researchers have developed a new approach to decoding the vast information embedded in an organism's genome, while shedding light on exactly how cells interpret their genetic material to create RNA messages and launch new processes in the cell.

Related Articles


By combining biochemical techniques with new, fast DNA-sequencing technology and advanced computer technology, the team was able to examine with unprecedented resolution how a cell converts DNA into RNA -- a molecular cousin of DNA that is used in the process of creating proteins that govern most biological functions. And they did so within the cell itself, rather than in a test tube.

As a result, they were able to bridge an important gap in the understanding of what causes genes to be turned on and off. Their findings will appear in the Jan. 20 issue of the journal Nature.

The main way the genome is "read" in a cell is through its transcription into RNA, the researchers explained. Until now, scientists have been able to detect which RNAs were produced, but have had a limited view of how much of the genome was being decoded, or "transcribed," or what controls how fast these RNAs are made. The new technique enables them to watch this process directly.

"This lets you capture the cell in the process of turning the DNA into RNA at unprecedented resolution," said Jonathan S. Weissman, PhD, a professor in the UCSF Department of Cellular and Molecular Pharmacology and senior author on the paper. "Before, we were typically studying the end product. Now, we can directly watch how these RNA messages are produced in vivo."

The advance enables researchers to make sense of the vast amounts of data generated by the Human Genome Project and the multiple genome sequencing efforts worldwide, while providing new tools for studying basic processes like the reprogramming of stem cells, Weissman said.

"The genome is the hard drive of the cell," explained L. Stirling Churchman, PhD, who was the first author of the two-author paper and last year was honored for this work with the Dale F. Frey for Breakthrough Scientists award of the Damon Runyon Cancer Research Foundation. "Until now, we've been able to see the information that the hard drive contains as well as see the result after the cell has read that information, but we didn't know which precise data it was accessing.

"Here, we've been able to see which data it is accessing, with a high enough resolution to also be able to see how it's actually working," she said.

Until quite recently, many scientists thought that less than 5 percent of the human genome was actually transcribed into RNA and therefore used in the cell's function, Churchman said. Recent advances in the field have revealed a tremendous complexity in that process, with new understanding that the majority of DNA is transcribed. Much of the product is still considered "junk RNA" -- simply a byproduct of the process.

"Now, the question is not, 'Why is that DNA there?' but, 'Why is that RNA there?'" said Churchman, a physicist and post-doctoral scholar at UCSF. "It could be junk RNA, but we don't know."

The research focused on DNA transcription in baker's yeast, largely because that organism's genome has been extensively studied. As a result, previous scientists had already developed maps of the genome and identified the positions of nucleosomes along it. Nucleosomes are grape-like structures formed by strands of DNA wrapped like vines around histone proteins, and serve to organize enormously long DNA molecules.

Histone proteins are known to have many marks that dictate whether a gene should be turned on or off, among other functions, while retaining a history of what has happened recently in that part of the gene code and a "plan" for what should happen in the future.

By overlaying those maps with their own maps of RNA production, the scientists were able to observe for the first time that polymerase comes in direct contact with the histone proteins during the transcription process, while also seeing how the nucleosomes acted as a speed bump for the polymerase enzyme as it moved along the genome transcribing DNA into RNA. In addition, the research showed that the organization of histone marks controlled whether "junk RNA" was produced from a given region of DNA.

This new approach gives researchers a precise view of the process in action, as well as insights on general trends in how histone proteins and their marks affect transcription.

"There is a long history of trying to look at how genes are turned on," Weissman said. "So far, nothing has been analogous at this resolution and depth."

The research was supported by the Damon Runyon Cancer Research Foundation and by the Howard Hughes Medical Institute. The authors declare no conflicts of interest.

Churchman and Weissman were the sole co-authors on the paper. Both are affiliated with the UCSF Department of Cellular and Molecular Pharmacology and the California Institute for Quantitative Biosciences, at UCSF. Weissman is also an investigator with the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by University of California - San Francisco. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Stirling Churchman, Jonathan S. Weissman. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature, 2011; 469 (7330): 368 DOI: 10.1038/nature09652

Cite This Page:

University of California - San Francisco. "Scientists view genome as it turns on and off inside cells." ScienceDaily. ScienceDaily, 20 January 2011. <www.sciencedaily.com/releases/2011/01/110119141723.htm>.
University of California - San Francisco. (2011, January 20). Scientists view genome as it turns on and off inside cells. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2011/01/110119141723.htm
University of California - San Francisco. "Scientists view genome as it turns on and off inside cells." ScienceDaily. www.sciencedaily.com/releases/2011/01/110119141723.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins