Featured Research

from universities, journals, and other organizations

Long-distance migration may help reduce infectious disease risks for many animal species

Date:
January 23, 2011
Source:
University of Georgia
Summary:
It's a common assumption that animal migration, like human travel across the globe, can transport pathogens long distances, in some cases increasing disease risks to humans. In some cases, animal migrations could actually help reduce the spread and prevalence of disease and may even promote the evolution of less-virulent disease strains, according to new research.

Canada geese migrating. Researchers report that in some cases, animal migrations could help reduce the spread and prevalence of disease and may even promote the evolution of less-virulent disease strains.
Credit: iStockphoto/Marcel Pelletier

It's a common assumption that animal migration, like human travel across the globe, can transport pathogens long distances, in some cases increasing disease risks to humans. West Nile Virus, for example, spread rapidly along the East coast of the U.S., most likely due to the movements of migratory birds.

Related Articles


But in a paper just published in the journal Science, researchers in the University of Georgia Odum School of Ecology report that in some cases, animal migrations could actually help reduce the spread and prevalence of disease and may even promote the evolution of less-virulent disease strains.

Every year, billions of animals migrate, some taking months to travel thousands of miles across the globe. Along the way, they can encounter a broad range of pathogens while using different habitats and resources. Stopover points, where animals rest and refuel, are often shared by multiple species in large aggregations, allowing diseases to spread among them.

But, according to Odum School associate professor Sonia Altizer and her co-authors, Odum School postdoctoral associates Rebecca Bartel and Barbara Han, migration can also help limit the spread of some pathogens.

Some kinds of parasites have transmission stages that can build up in the environment where host animals live, and migration allows the hosts to periodically escape these parasite-laden habitats. While hosts are gone, parasite numbers become greatly reduced so that the migrating animals find a largely disease-free habitat when they return. Long migratory journeys can also weed infected animals from the population: imagine running a marathon with the flu. This not only prevents those individuals from spreading disease to others, it also helps to eliminate some of the most virulent strains of pathogens.

"By placing disease in an ecological context," said Odum School dean John Gittleman, "you not only see counterintuitive patterns but also understand advantages to disease transmission. This is a classic example of disease ecology at its best."

Altizer's long-term research on monarch butterflies and a protozoan parasite that infects them provides an excellent demonstration of migration's effects on the spread of infectious disease. Monarchs in eastern North America migrate long distances, from as far north as Canada, to central Mexico, where they spend the winter. Monarchs in other parts of the world migrate shorter distances. In locations with mild year-round climates, such as southern Florida and Hawaii, monarchs do not migrate at all. Work by Altizer and others in her lab showed that parasite prevalence is lowest in the eastern North American population, which migrates the farthest distance, and highest in non-migratory populations. This could be because infected monarchs do not migrate successfully, as suggested by tethered-flight experiments with captive butterflies, or because parasites build up in habitats where monarchs breed year-round. Other work showed that parasites isolated from monarchs that flew the longest were less virulent than those found in monarchs that flew shorter distances or didn't migrate at all, suggesting that monarchs with highly virulent parasites didn't survive the longest migrations.

"Taken together, these findings tell us that migration is important for keeping monarch populations healthy -- a result that could apply to many other migratory animal species," said Altizer.

But for monarchs, and many other species, migration is now considered an endangered phenomenon. Deforestation, urbanization and the spread of agriculture have eliminated many stopover sites, and artificial barriers such as dams and fences have blocked migration routes for other species. These changes can artificially elevate animal densities and facilitate contact between wildlife, livestock and humans, increasing the risk that pathogens will spread across species. As co-author Han noted, "A lot of migratory species are unfairly blamed for spreading infections to humans, but there are just as many examples suggesting the opposite -- that humans are responsible for creating conditions that increase disease in migratory species."

And as the climate warms, species like the monarch may no longer need to undertake the arduous migratory journey to their wintering grounds. With food resources available year-round, some species may shorten or give up their migrations altogether -- prolonging their exposure to parasites in the environment, raising the rates of infection and favoring the evolution of more virulent disease strains. "Migration is a strategy that has evolved over millions of years in response to selection pressures driven by resources, predators and lethal parasitic infections -- any changes to this strategy could translate to changes in disease dynamics," said Han.

"There is an urgent need for more study of pathogen dynamics in migratory species and how human activities affect those dynamics," Altizer said. The paper concludes with an outline of challenges and questions for future research. "We need to learn more in order to make decisions about the conservation and management of wildlife and to predict and mitigate the effects of future outbreaks of infectious diseases."


Story Source:

The above story is based on materials provided by University of Georgia. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Altizer, R. Bartel, B. A. Han. Animal Migration and Infectious Disease Risk. Science, 2011; 331 (6015): 296 DOI: 10.1126/science.1194694

Cite This Page:

University of Georgia. "Long-distance migration may help reduce infectious disease risks for many animal species." ScienceDaily. ScienceDaily, 23 January 2011. <www.sciencedaily.com/releases/2011/01/110120142323.htm>.
University of Georgia. (2011, January 23). Long-distance migration may help reduce infectious disease risks for many animal species. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2011/01/110120142323.htm
University of Georgia. "Long-distance migration may help reduce infectious disease risks for many animal species." ScienceDaily. www.sciencedaily.com/releases/2011/01/110120142323.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins