Featured Research

from universities, journals, and other organizations

Detecting pathogens in waterways: An improved approach

Date:
February 8, 2011
Source:
USDA/Agricultural Research Service
Summary:
U.S. scientists have come up with a way to detect pathogenic Escherichia coli and Salmonella bacteria in waterways at lower levels than any previous method. Similar methods have been developed to detect pathogenic E. coli in meat products, but this latest approach represents a first for waterways.

U.S. Department of Agriculture (USDA) scientists have come up with a way to detect pathogenic Escherichia coli and Salmonella bacteria in waterways at lower levels than any previous method. Similar methods have been developed to detect pathogenic E. coli in meat products, but the approach by the scientists with USDA's Agricultural Research Service (ARS) represents a first for waterways.

Related Articles


ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priority of ensuring food safety.

When health officials test a public beach or lake for Salmonella or E. coli 0157:H7, they use two types of non-pathogenic bacteria, Enterococci and generic E. coli, as indicators. But while the indicators are often detected in contaminated waterways, their abundance doesn't guarantee the presence of either pathogen, according to Michael Jenkins, a microbiologist at the ARS J. Phil Campbell Sr. Natural Resource Conservation Center in Watkinsville, Ga.

These indicator organisms are often reliable, but investigators have detected the indicators in pathogen-free waters and have failed to find them in waters that contained sufficient levels of the pathogens to make someone sick.

The indicators are used as signals because both pathogens are hard to detect directly at levels that will make someone ill: just 100 cells of Salmonella and just 10 to 100 cells of E. coli 0157:H7, the toxic strain of the bacterium. Organic matter in a water sample will throw off current PCR (polymerase chain reaction) technology when it is used as a tool for detection. Salmonella and E. coli outbreaks are often attributed to agricultural operations, so improving ways to track down sources of outbreaks is a major priority.

Jenkins and his ARS colleagues Dinku Endale and Dwight Fisher at Watkinsville combined techniques previously developed to assess water quality and detect pathogens in laboratory settings: a water filtration technique to concentrate the pathogens; a special medium for growing and measuring the number of pathogenic cells; a biochemical testing process; and PCR technology.

They collected water samples from a pond at the Watkinsville site, ran them through a special filter, removed the filter contents and used a centrifuge to spin the filtered contents into a pellet form. They used the suspended pellets to develop cell cultures, confirmed their identity with a genetic method, and determined the concentration found in the original samples.

Their results, published in the Journal of Applied Microbiology, showed the process can be used to detect just a few cells of pathogenic E. coli and Salmonella in a 10-liter water sample, lower levels than any previously detected. Because the system involves collecting cell cultures, it also may lead to developing culture collections that-like a fingerprint database-could be used to identify bacterial strains that are potential sources of future outbreaks.


Story Source:

The above story is based on materials provided by USDA/Agricultural Research Service. Note: Materials may be edited for content and length.


Journal References:

  1. M.B. Jenkins, D.M. Endale, D.S. Fisher, P.A. Gay. Most probable number methodology for quantifying dilute concentrations and fluxes ofEscherichia coliO157:H7 in surface waters. Journal of Applied Microbiology, 2009; 106 (2): 572 DOI: 10.1111/j.1365-2672.2008.04028.x
  2. M.B. Jenkins, D.M. Endale, D.S. Fisher. Most probable number methodology for quantifying dilute concentrations and fluxes of Salmonella in surface waters. Journal of Applied Microbiology, 2008; 104 (6): 1562 DOI: 10.1111/j.1365-2672.2007.03677.x

Cite This Page:

USDA/Agricultural Research Service. "Detecting pathogens in waterways: An improved approach." ScienceDaily. ScienceDaily, 8 February 2011. <www.sciencedaily.com/releases/2011/02/110208144124.htm>.
USDA/Agricultural Research Service. (2011, February 8). Detecting pathogens in waterways: An improved approach. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2011/02/110208144124.htm
USDA/Agricultural Research Service. "Detecting pathogens in waterways: An improved approach." ScienceDaily. www.sciencedaily.com/releases/2011/02/110208144124.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins