Featured Research

from universities, journals, and other organizations

Unraveling how prion proteins move along axons in the brain

Date:
February 22, 2011
Source:
University of California - San Diego
Summary:
Researchers have identified the motors that move non-infectious prion proteins -- found within many mammalian cells -- up and down long, neuronal transport pathways. Identifying normal movement mechanisms of PrPC may help researchers understand the spread of infectious prions within and between neurons to reach the brain, and aid in development of therapies to halt the transport.

Researchers at the University of California, San Diego School of Medicine have identified the motors that move non-infectious prion proteins (PrPC) -- found within many mammalian cells -- up and down long, neuronal transport pathways. Identifying normal movement mechanisms of PrPC may help researchers understand the spread of infectious prions within and between neurons to reach the brain, and aid in development of therapies to halt the transport.

Their study is published in the February 18 edition of the journal Cell.

The small prion protein is found in the cell membrane of brain neurons. The misfolded or infectious form of this protein (also called "scrapie"), is responsible for "mad cow" disease and has also been implicated in Creutzfeldt-Jakob disease in humans. Non-infectious and scrapie forms interact to produce disease; so, in order to help uncover how the infection is spread within and among neuron cells to the brain, the UCSD scientists studied the movement mechanism of normal PrPC in mouse neuronal cells.

"Our work unraveling the normal mechanism of movement of this prion protein will help us understand how the devastating pathogenic versions found in mad cow disease and other prion diseases are formed and transmitted in the brain. Intriguingly, our work may also shed light on what goes wrong in other neurodegenerative diseases such as Alzheimer's disease," said principal investigator Larry Goldstein, PhD, professor of Cellular and Molecular Medicine, Howard Hughes Medical Institute investigator and director of the UC San Diego Stem Cell Program.

It is known that normal prion proteins and infectious prions need to interact in order for prion pathogenesis to occur, though not how or why these interactions occur. Discovering the transport mechanisms of prions is one key to the puzzle of how the two types of proteins interact, and an important question in transport regulation has been how motor activity is controlled in cells.

The prion protein cargo travels on long microtubule tracks along the peripheral and central nervous system nerves toward the terminus, or synapse, in membrane-bound sacs called vesicles. Intracellular transport is often bi-directional, because cargoes regularly reverse their course en route to their final destinations.

The researchers identified the motors driving these vesicles as anterograde Kinesin-1 -- which moves only toward the synapse -- and dynein, which is retrograde, moving away from the synapse. These two motor proteins assemble on the PrPC vesicles to "walk" them back and forth along the microtubules.

Secondly, they discovered that the back and forth cargo movement is modulated by regulatory factors, rather than by any structural changes to the motor-cargo associations. The study data show that the activity of Kinesin-1 and dynein are tightly coupled, with PrPC vesicles moving at different velocities and for varied lengths along axons. However, the type and amounts of these motor assemblies remain stably associated with stationary as well as moving vesicles, and normal retrograde transport by Kinesin-1 is independent of dynein-vesicle attachment.

The UCSD study of the mechanisms behind normal vesicle movement along the axons in mouse cells might also shed light on other neurodegenerative disease. While Alzheimer's is not generally considered an infectious disease like mad cow disease, emerging data suggest that Tau, amyloid-beta, and alpha-synuclein -- proteins implicated in Alzheimer's and Parkinson's disease -- have self-propagating fibril structures with prion-like characteristics.

"Whether these toxic molecules spread along neuronal transport pathways in ways similar to the normal prion protein is unknown," said first author Sandra E. Encalada, PhD, of the UCSD Department of Cellular and Molecular Medicine. "But characterization of these normal mechanisms might lead to a way to control movement of intracellular aggregates, and perhaps to therapies for many neurodegenerative diseases."

Additional contributors to the study include Lukasz Szpankowski, of the UCSD bioinformatics graduate program and the Howard Hughes Medical Institute, and Chun-hong Xia, UCSD Department of Cellular and Molecular Medicine, now at UC Berkeley.

The study was supported in part by the National Institutes of Health's National Institute on Aging.


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Debra Kain. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sandra E. Encalada, Lukasz Szpankowski, Chun-Hong Xia and Lawrence S. Goldstein. Stable Kinesin and Dynein Assemblies Drive the Axonal Transport of Mammalian Prion Protein Vesicles. Cell, Volume 144, Issue 4, 18 February 2011, Pages 551-565 DOI: 10.1016/j.cell.2011.01.021

Cite This Page:

University of California - San Diego. "Unraveling how prion proteins move along axons in the brain." ScienceDaily. ScienceDaily, 22 February 2011. <www.sciencedaily.com/releases/2011/02/110217125111.htm>.
University of California - San Diego. (2011, February 22). Unraveling how prion proteins move along axons in the brain. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2011/02/110217125111.htm
University of California - San Diego. "Unraveling how prion proteins move along axons in the brain." ScienceDaily. www.sciencedaily.com/releases/2011/02/110217125111.htm (accessed September 19, 2014).

Share This



More Mind & Brain News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Food Addiction Might Be Caused By PTSD

Food Addiction Might Be Caused By PTSD

Newsy (Sep. 18, 2014) New research shows that women who suffer from PTSD are three times more likely to develop a food addiction. Video provided by Newsy
Powered by NewsLook.com
Corporal Punishment on Decline, Debate Renews

Corporal Punishment on Decline, Debate Renews

AP (Sep. 16, 2014) Corporal punishment in the United States is on the decline, but there is renewed debate over its use after Minnesota Vikings running back Adrian Peterson was charged with child abuse. (Sept. 16) Video provided by AP
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins