Featured Research

from universities, journals, and other organizations

Evolution drives many plants and animals to be bigger, faster

Date:
March 9, 2011
Source:
National Evolutionary Synthesis Center (NESCent)
Summary:
For the vast majority of plants and animals, the 'bigger is better' view of evolution may not be far off the mark, says a new broad-scale study of natural selection. Organisms with bigger bodies or faster growth rates tend to live longer, mate more and produce more offspring, whether they are deer or damselflies, the authors report.

Flamingos. Researchers working at the National Evolutionary Synthesis Center compiled and reviewed nearly 150 published estimates of natural selection, representing more than 100 species of birds, lizards, snakes, insects and plants. The results confirm that for most plants and animals, larger body size and earlier seasonal timing -- such as earlier breeding, blooming or hatching -- confer significant survival advantages.
Credit: Copyright Michele Hogan

For the vast majority of plants and animals, the 'bigger is better' view of evolution may not be far off the mark, says a new broad-scale study of natural selection. Organisms with bigger bodies or faster growth rates tend to live longer, mate more and produce more offspring, whether they are deer or damselflies, the authors report.

Researchers working at the National Evolutionary Synthesis Center compiled and reviewed nearly 150 published estimates of natural selection, representing more than 100 species of birds, lizards, snakes, insects and plants. The results confirm that for most plants and animals, larger body size and earlier seasonal timing -- such as earlier breeding, blooming or hatching -- confer significant survival advantages.

"It's a very widespread pattern," said co-author Joel Kingsolver of the University of North Carolina at Chapel Hill.

What's puzzling, the authors say, is not why the 'bigger is better' model of evolution is so common, but why the 'Goldilocks' model is so rare: If organisms are supposedly well-adapted to their particular circumstances, then why is it so seldom the case that the individuals that survive and reproduce the best are the ones that are not too small, nor too big, but just right?

A classic example is human birth weight. Newborns of intermediate size are more likely to survive than newborns that are extremely large or extremely small. In lieu of driving organisms to be bigger and faster over time, the 'Goldilocks' model -- also known as stabilizing selection -- favors moderation, the authors explained. But for the vast majority of organismal traits, this pattern is the exception, not the rule. "Rarely is it the case that the individuals that survive and reproduce the best are the ones in the middle," Kingsolver said.

The result is puzzling because the conventional wisdom is that most creatures are well adapted to the environments in which they live. "When we look at nature, we see all these amazing ways species are well-adapted to their lifestyles and habitats," Kingsolver said. "Yet the organisms that are bigger, faster, still do the best in terms of survival and reproduction. Why aren't they already just the right size or speed, or pretty close to it?" he asked.

The authors explored three possible explanations. One possibility, they explained, is that evolving to be bigger, faster, or flashier comes at a cost. "A trait that's good for reproduction or fertility may be bad for survival -- there may be a tradeoff," Kingsolver said. "In guppies, for example, brightly colored males have greater mating success, but they're also more likely to be eaten by predators," said co-author Sarah Diamond, currently a postdoctoral researcher at North Carolina State University.

Another possibility is that environments simply change from one season to the next, such that the traits that confer the greatest advantage change over time. "In Darwin's finches, for example, there are years where large-beaked birds have an advantage because large seeds are more abundant, and years where smaller-beaked birds do better because small seeds are more abundant," Diamond said.

A third possibility is that natural selection drives one trait in one direction, while simultaneously driving another, genetically correlated trait in the opposite direction. "For example it may be good for flying insects to evolve larger wings and smaller bodies for more efficient flight," Kingsolver said, "but if insects with larger wings also have larger bodies, they can't evolve both."

The third explanation frequently limits the evolution of body size, the authors found, but not traits related to timing, or body shape, or coloration. "Size is the one case where correlated selection is important," Kingsolver said.

The findings appear in the March 2011 issue of American Naturalist.


Story Source:

The above story is based on materials provided by National Evolutionary Synthesis Center (NESCent). Note: Materials may be edited for content and length.


Journal Reference:

  1. Joel G. Kingsolver, Sarah E. Diamond. Phenotypic Selection in Natural Populations: What Limits Directional Selection? The American Naturalist, 2011; 177 (3): 346 DOI: 10.1086/658341

Cite This Page:

National Evolutionary Synthesis Center (NESCent). "Evolution drives many plants and animals to be bigger, faster." ScienceDaily. ScienceDaily, 9 March 2011. <www.sciencedaily.com/releases/2011/03/110307142240.htm>.
National Evolutionary Synthesis Center (NESCent). (2011, March 9). Evolution drives many plants and animals to be bigger, faster. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2011/03/110307142240.htm
National Evolutionary Synthesis Center (NESCent). "Evolution drives many plants and animals to be bigger, faster." ScienceDaily. www.sciencedaily.com/releases/2011/03/110307142240.htm (accessed September 15, 2014).

Share This



More Fossils & Ruins News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Museum Traces Fragments of Star-Spangled Banner

Museum Traces Fragments of Star-Spangled Banner

AP (Sep. 12, 2014) — As the Star-Spangled Banner celebrates its bicentennial, Smithsonian curators are still uncovering fragments of the original flag that inspired Francis Scott Key's poem. (Sept. 12) Video provided by AP
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com
Meet Spinosaurus, the First-Known Water Dinosaur

Meet Spinosaurus, the First-Known Water Dinosaur

AFP (Sep. 11, 2014) — Spinosaurus aegyptiacus was adapted for both land and water, and an exhibit featuring a life-sized model, based on new fossils unearthed in eastern Morocco, opens at the National Geographic Museum in Washington on Friday. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
NatGeo Unveils Life-Size 'Spinosaurus'

NatGeo Unveils Life-Size 'Spinosaurus'

AP (Sep. 11, 2014) — Scientists announced new findings about the first ever non-bird dinosaur that could have lived much of its time in the water. National Geographic created a life-size 50-foot model of the prehistoric creature. (Sept. 11) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins