Featured Research

from universities, journals, and other organizations

Viruses teach researchers how to protect corn from fungal infection

Date:
March 9, 2011
Source:
Donald Danforth Plant Science Center
Summary:
Smut fungi are agents of disease responsible for significant crop losses worldwide. Researchers recently collaborated on a project to develop a variety of corn that is highly resistant to corn smut caused by the fungus, Ustilago maydis.

An ear of corn infected with corn smut.
Credit: Image courtesy of Donald Danforth Plant Science Center

Smut fungi are agents of disease responsible for significant crop losses worldwide. Principal investigator Dr. Thomas Smith and research associate member Dr. Dilip Shah at The Donald Danforth Plant Science Center collaborated on a project to develop a variety of corn that is highly resistant to corn smut caused by the fungus, Ustilago maydis.

The results of this research are published in the Plant Biotechnology Journal.

The most economically important crop in the U.S., American farmers planted nearly 90 million acres of corn generating nearly $50 billion in 2010. In addition to food and feed, the current emphasis on biofuels has elevated the importance of corn in U.S. agriculture in recent years.

Corn smut is an airborne fungus found most frequently on ears, tassels and nodes. Sweet corn is more susceptible to corn smut than is seed corn with annual losses often as high as 20% in the U.S. In the U.S. alone, corn smut is responsible for approximately $1 billion in crop losses annually (National Corn Growers Association).

Prior to the Danforth Center discovery, there were no corn varieties that were naturally immune to Ustilago maydis. Several methods to control the disease have been recommended including, crop rotation, sanitation, seed treatments, application of fungicides and modification of fertility and biological controls. Drs. Smith and Shah explored an alternative approach using a naturally found killer protein, KP4, made by a virus that lives in one specific strain of corn smut.

"This is the only symbiosis I know of in the virus world," said Smith. "Viruses like the common cold and the flu infect the host cell and destroy it after they have reproduced. In contrast, these corn smut viruses cannot leave the cell and the viruses 'know' that the host has to live if they hope to survive. To make sure its captive host lives, this virus, UMV4, makes a protein that is exported from the host cell and will kill off the other strains of corn smut trying to infect the same ear of corn. It's an infection of an infection; the corn smut infects the corn, the virus infects the smut, and virus produces the KP4 protein to kill competing fungi, and thus insuring the host will outcompete other corn smut strains. With our genetically modified corn, the plants are producing so much KP4 protein, that the corn smut strains commonly found in the field are killed by the plant before they get a chance to establish an infection."

Toxicity studies have shown that the KP4 proteins are safe for humans and animals to consume. Smith and Shah will continue to explore KP4 and other antifungal proteins ability to control other pathogenic fungi.

"Applying our control method could significantly reduce annual losses caused by corn smut and other fungi," said Smith. Plants often require a number of genes to only partially protect the plant from a particular fungal infection, making it difficult to use traditional breeding methods to develop resistant lines. Here we have shown that a single gene that can lend extremely robust protection, giving us hope that there are other similar and effective solutions to be found in nature."


Story Source:

The above story is based on materials provided by Donald Danforth Plant Science Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aron Allen, Emir Islamovic, Jagdeep Kaur, Scott Gold, Dilip Shah, Thomas J. Smith. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Plant Biotechnology Journal, 2011; DOI: 10.1111/j.1467-7652.2011.00590.x

Cite This Page:

Donald Danforth Plant Science Center. "Viruses teach researchers how to protect corn from fungal infection." ScienceDaily. ScienceDaily, 9 March 2011. <www.sciencedaily.com/releases/2011/03/110309102154.htm>.
Donald Danforth Plant Science Center. (2011, March 9). Viruses teach researchers how to protect corn from fungal infection. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/03/110309102154.htm
Donald Danforth Plant Science Center. "Viruses teach researchers how to protect corn from fungal infection." ScienceDaily. www.sciencedaily.com/releases/2011/03/110309102154.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins