Featured Research

from universities, journals, and other organizations

Hospital infections: Unique antibody from llamas provide weapon against Clostridium difficile

Date:
March 18, 2011
Source:
University of Calgary
Summary:
Researchers say they are gaining a deeper understanding of virulent hospital infection and are closer to developing a novel treatment using antibodies from llamas.

Clostridium difficile is a health problem that affects hundreds of thousands of patients and costs $10 billion to $20 billion every year in North America. Researchers from the University of Calgary and the National Research Council of Canada say they are gaining a deeper understanding of this disease and are closer to developing a novel treatment using antibodies from llamas.

Related Articles


"We have found that relatively simple antibodies can interfere with the disease-causing toxins from C. difficile," says paper co-author Dr. Kenneth Ng, an associate professor of biological sciences at the University of Calgary and principal investigator of the Alberta Ingenuity Centre for Carbohydrate Science. "This discovery moves us a step closer to understanding how to neutralize the toxins and to create novel treatments for the disease." His research is part of a paper published March 18 in the print issue of the Journal of Biological Chemistry.

Approximately two percent of all patients admitted to hospital may be infected by C. difficile, which thrives when healthy bacteria in the gut are weakened by antibiotics, thus allowing spores from Clostridium to germinate and colonize the large intestine.

"This research is significant because C. difficile is an increasing heath care problem and many people may experience multiple infections," says Dr. Glen Armstrong, head of the Department of Microbiology, Immunology, and Infectious Diseases in the Faculty of Medicine at the University of Calgary. "The current treatments are becoming less effective and C. difficile is developing resistance to conventional antibiotics. This research promises to provide a much-needed alternate treatment option that will overcome the failings of conventional antibiotics."

C. difficile produces two toxins -- toxin A (TcdA) and toxin B (TcdB) -- which cause damage to intestinal cells by binding to carbohydrates on the cell surface and disrupting cell functions such as adhesion. The new research shows that what's known as single-domain antibodies bind to the C. difficile toxins with high affinity and interfere with the toxins' ability to damage cells.

"Llamas have normal antibodies like our own, but they have also developed a second type of antibody with a simpler structure. It is this simpler structure that allows us to make modifications and perform many detailed studies that are not easily done with other types of antibodies," says Ng. "The unique characteristics of these single-domain antibodies provide an attractive approach for developing new treatments for C. difficile."

These single-domain antibodies were discovered in 1993 in camelids, which include llamas and camels. Camelids produce conventional antibodies found in all mammals as well as heavy-chain antibodies from which single-domain antibodies are derived. These single-chain antibodies are 10 times smaller than those found in humans and can be more readily engineered into a drug.

Dr. Jamshid Tanha, the corresponding author of the study from the National Research Council in Ottawa says that understanding how camelid antibodies work will ultimately allow researchers to develop a new treatment for this important disease and potentially others.

"We are currently working with Dr. Ng's group to determine why these antibodies are successful," says Tanha.


Story Source:

The above story is based on materials provided by University of Calgary. The original article was written by Leanne Yohemas. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Hussack, M. Arbabi-Ghahroudi, H. van Faassen, J. G. Songer, K. K.- S. Ng, R. MacKenzie, J. Tanha. Neutralization of Clostridium difficile Toxin A with Single-domain Antibodies Targeting the Cell Receptor Binding Domain. Journal of Biological Chemistry, 2011; 286 (11): 8961 DOI: 10.1074/jbc.M110.198754

Cite This Page:

University of Calgary. "Hospital infections: Unique antibody from llamas provide weapon against Clostridium difficile." ScienceDaily. ScienceDaily, 18 March 2011. <www.sciencedaily.com/releases/2011/03/110318111927.htm>.
University of Calgary. (2011, March 18). Hospital infections: Unique antibody from llamas provide weapon against Clostridium difficile. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2011/03/110318111927.htm
University of Calgary. "Hospital infections: Unique antibody from llamas provide weapon against Clostridium difficile." ScienceDaily. www.sciencedaily.com/releases/2011/03/110318111927.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins