Featured Research

from universities, journals, and other organizations

In vivo systems biology: Using computer models, systems biologists can predict complicated behavior of cells in living animals

Date:
March 25, 2011
Source:
Massachusetts Institute of Technology
Summary:
Researchers report that they have created a new computational model that describes how intestinal cells in mice respond to a natural chemical called tumor necrosis factor (TNF).

Biological systems, including cells, tissues and organs, can function properly only when their parts are working in harmony. These systems are often dauntingly complex: Inside a single cell, thousands of proteins interact with each other to determine how the cell will develop and respond to its environment.

To understand this great complexity, a growing number of biologists and bioengineers are turning to computational models. This approach, known as systems biology, has been used successfully to model the behavior of cells grown in laboratory dishes. However, until now, no one has used it to model the behavior of cells inside a living animal.

In the March 22 online edition of the journal Science Signaling, researchers from MIT and Massachusetts General Hospital report that they have created a new computational model that describes how intestinal cells in mice respond to a natural chemical called tumor necrosis factor (TNF).

The work demonstrates that systems biology offers a way to get a handle on the complexity of living systems and raises the possibility that it could be used to model cancer and other complex diseases, says Douglas Lauffenburger, head of MIT's Department of Biological Engineering and a senior author of the paper.

"You're not likely to explain most diseases in terms of one genetic deficit or one molecular impairment," Lauffenburger says. "You need to understand how many molecular components, working in concert, give rise to how cells and tissues are formed -- either properly or improperly."

Biological complexity

Systems biology, a field that has grown dramatically in the past 10 years, focuses on analyzing how the components of a biological system interact to produce the behavior of that system -- for example, the many proteins that interact with each other inside a cell to respond to hormones or other external stimuli.

"The beauty of systems biology is that it doesn't ignore the biological complexity of what's going on," says Kevin Haigis, an assistant professor of pathology at MGH and Harvard Medical School and a senior author of the Science Signaling paper.

"Biologists are trained to be reductionists," adds Haigis, who was a postdoctoral associate at MIT before moving to MGH. "I don't think people have failed to realize the complexity of how biology works, but people are accustomed to trying to reduce complexity to make things more understandable."

In contrast, the systems biology approach tries to capture that complexity through computer modeling of many variables. Inputs to the model might be the amounts of certain proteins found inside cells, and outputs would be the cells' resulting behaviors -- for example, growing, committing suicide or secreting hormones.

While at MIT, Haigis worked in the lab of Tyler Jacks, director of the David H. Koch Institute for Integrative Cancer Research at MIT, studying the role of the cancer-causing gene Ras in the mouse colon. He teamed up with Lauffenburger and others to computationally model Ras' behavior in cell culture.

After Haigis moved to MGH, he and Lauffenburger decided to bring this computational approach to studying living animals because they believed that studies done in cultured cells could miss some of the critical factors that come into play in living systems, such as the location of a cell within a living tissue and the influence of cells that surround it.

Inflammation

In the new paper, the researchers tackled the complex interactions that produce inflammation in the mouse intestine. The intestine contains many types of cells, but they focused on epithelial cells (which line the intestinal tube) and their response to TNF.

Previous work has shown that TNF plays a central role in intestinal inflammation, and provokes one of two possible responses in the intestinal epithelial cells: cell death or cell proliferation. Chronic inflammation can lead to inflammatory bowel disease and potentially cancer.

In this study, the researchers got the data they needed to develop their computational model by treating normal mice with TNF, then determining whether the cells proliferated or died. They found that cell fate depended on the cells' location in the intestine -- cells in the ileum proliferated, while those in the duodenum died.

The multi-faceted result would likely not have been seen in a lab dish. "In cell culture, you would have gotten one or the other," Lauffenburger says.

They also correlated the diverse outcomes with the activities of more than a dozen proteins found in the cells, allowing them to determine how the outcomes depended on quantitative combination of key signaling pathways, and furthermore, to predict how the outcomes would be affected by drug treatment. The researchers then tested the model's predictions in an additional cohort of mice, and found that they were accurate.

Modeling disease

Jason Papin, assistant professor of biomedical engineering at the University of Virginia, says that the team's biggest accomplishment is demonstrating that systems biology modeling can be done in living animals (in vivo). "You always want to move to an in vivo setting, if possible, but it's technically more difficult," says Papin, who was not involved with this research.

The researchers are now trying to figure out in more detail what factors in the intestinal cells' environment influence the cells to behave the way they do. They are also studying how genetic mutations might alter the cells' responses.

They also plan to begin a study of neurological diseases such as Alzheimer's disease. Cancer is another disease that lends itself to this kind of modeling, says Jacks, who was not part of this study. Cancer is an extremely complicated disease that usually involves derangement of many cell signaling pathways involved in cell division, DNA repair and stress response.

"We expect that our ability to predict which targets, which drugs and which patients to bring together in the context of cancer treatment will require a deeper understanding of the complex signaling pathways that exist in cancer," says Jacks. "This approach will help us get there."


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. S. Lau, A. M. Juchheim, K. R. Cavaliere, S. R. Philips, D. A. Lauffenburger, K. M. Haigis. In Vivo Systems Analysis Identifies Spatial and Temporal Aspects of the Modulation of TNF--Induced Apoptosis and Proliferation by MAPKs. Science Signaling, 2011; 4 (165): ra16 DOI: 10.1126/scisignal.2001338

Cite This Page:

Massachusetts Institute of Technology. "In vivo systems biology: Using computer models, systems biologists can predict complicated behavior of cells in living animals." ScienceDaily. ScienceDaily, 25 March 2011. <www.sciencedaily.com/releases/2011/03/110323183819.htm>.
Massachusetts Institute of Technology. (2011, March 25). In vivo systems biology: Using computer models, systems biologists can predict complicated behavior of cells in living animals. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2011/03/110323183819.htm
Massachusetts Institute of Technology. "In vivo systems biology: Using computer models, systems biologists can predict complicated behavior of cells in living animals." ScienceDaily. www.sciencedaily.com/releases/2011/03/110323183819.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com
Argentina Worries Over Decline of Soybean Prices

Argentina Worries Over Decline of Soybean Prices

AFP (Sep. 27, 2014) The drop in price of soy on the international market is a cause for concern in Argentina, as soybean exports are a major source of income for Latin America's third largest economy. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Mama Bear, Cubs Hang out in California Backyard

Mama Bear, Cubs Hang out in California Backyard

Reuters - US Online Video (Sep. 27, 2014) A mama bear and her two cubs climb trees, wrestle and take naps in the backyard of a Monrovia, California home. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com
'Crazy' Climate Forces Colombian Farmers to Adapt

'Crazy' Climate Forces Colombian Farmers to Adapt

AFP (Sep. 26, 2014) Once upon a time, farming was a blissfully low-tech business on Colombia's northern plains. Duration: 02:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins