Science News
from research organizations

Promising clue to mechanism behind gene mutation that causes Parkinson's disease

Date:
March 25, 2011
Source:
The Mount Sinai Hospital / Mount Sinai School of Medicine
Summary:
Researchers have discovered a way that mutations in a gene called LRRK2 may cause the most common inherited form of Parkinson's disease. The study, published online this month in the journal Public Library of Science, shows that upon specific modification called phosphorylation, LRRK2 protein binds to a family of proteins called 14-3-3, which has a regulatory function inside cells.
Share:
       
FULL STORY

Researchers at Mount Sinai School of Medicine have discovered a way that mutations in a gene called LRRK2 may cause the most common inherited form of Parkinson's disease. The study, published online in PLoS ONE, shows that upon specific modification called phosphorylation, LRRK2 protein binds to a family of proteins called 14-3-3, which has a regulatory function inside cells. When there is a mutation in LRRK2, 14-3-3 is impaired, leading to Parkinson's. This finding explains how mutations lead to the development of Parkinson's, providing a new diagnostic and drug target for the disease.

Using one-of-a-kind mouse models developed at Mount Sinai School of Medicine, Zhenyu Yue, PhD, Associate Professor of Neurology and Neuroscience, and his colleagues, found that several common Parkinson's disease mutations -- including one called G2019S -- disturb the specific phosphorylation of LRRK2.This impairs 14-3-3 binding with varying degrees, depending on the type of mutation.

"We knew that the LRRK2 mutation triggers a cellular response resulting in Parkinson's disease, but we did not know what processes the mutation disrupted," said Dr. Yue. "Now that we know that phosphorylation is disturbed, causing 14-3-3 binding to be impaired, we have a new idea for diagnostic analysis and a new target for drug development."

Dr. Yue's team also identified a potential enzyme called protein kinase A (PKA), responsible for the phosphorylation of LRRK2. Although the exact cellular functions disrupted by these changes are unclear, their study provides a starting point for understanding brain signaling that contributes to the disease. Recent studies have shown that 14-3-3 binds to other proteins implicated in inherited Parkinson's disease and has a neuroprotective function, and when the binding is impaired due to these mutations, the protection may be lost. The findings also demonstrate additional insight into the functional relevance of the LRRK2 and 14-3-3 interaction.

The presence of 14-3-3 in spinal fluid is already used as a biomarker for the presence of neurodegenerative diseases. Further applications of these findings could point to the use of 14-3-3 as a biomarker in testing for Parkinson's disease.

Dr. Yue's team at Mount Sinai includes Xianting Li, PhD, Associate Scientist, and Nina Pan, Associate Researcher; collaborators Brian T. Chait, PhD, and Qing Jun Wang, PhD, from the Rockefeller University; and Yingming Zhao, PhD, and Sangkyu Lee, PhD, from the University of Chicago. Dr. Yue's work is supported by grants from the National Institutes of Health, and The Michael J. Fox Foundation for Parkinson's Research.


Story Source:

The above post is reprinted from materials provided by The Mount Sinai Hospital / Mount Sinai School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xianting Li, Qing Jun Wang, Nina Pan, Sangkyu Lee, Yingming Zhao, Brian T. Chait, Zhenyu Yue. Phosphorylation-Dependent 14-3-3 Binding to LRRK2 Is Impaired by Common Mutations of Familial Parkinson's Disease. PLoS ONE, 2011; 6 (3): e17153 DOI: 10.1371/journal.pone.0017153

Cite This Page:

The Mount Sinai Hospital / Mount Sinai School of Medicine. "Promising clue to mechanism behind gene mutation that causes Parkinson's disease." ScienceDaily. ScienceDaily, 25 March 2011. <www.sciencedaily.com/releases/2011/03/110325102145.htm>.
The Mount Sinai Hospital / Mount Sinai School of Medicine. (2011, March 25). Promising clue to mechanism behind gene mutation that causes Parkinson's disease. ScienceDaily. Retrieved July 6, 2015 from www.sciencedaily.com/releases/2011/03/110325102145.htm
The Mount Sinai Hospital / Mount Sinai School of Medicine. "Promising clue to mechanism behind gene mutation that causes Parkinson's disease." ScienceDaily. www.sciencedaily.com/releases/2011/03/110325102145.htm (accessed July 6, 2015).

Share This Page: