Featured Research

from universities, journals, and other organizations

Like products, plants wait for optimal configuration before market success

Date:
March 30, 2011
Source:
Brown University
Summary:
Scientists have now amassed the largest evolutionary tree (phylogeny) for plants. They have learned that major groups of plants tinker with their design and performance before rapidly spinning off new species. The finding upends long-held thinking that plants' speciation rates are tied to the first development of a new physical trait or mechanism.

Botanical market testing Botanists had long thought that new species proliferate soon after plants developed a new physical trait. Stephen Smith and colleagues have shown that plants may bide their time for undergoing major speciation.
Credit: Mike Cohea/Brown University

An international research team led by Brown University has amassed the largest evolutionary tree (phylogeny) for plants. It has learned that major groups of plants tinker with their design and performance before rapidly spinning off new species. The finding upends long-held thinking that plants' speciation rates are tied to the first development of a new physical trait or mechanism.

Related Articles


Results are published in the American Journal of Botany.

Just as a company creates new, better versions of a product to increase market share and pad its bottom line, an international team of researchers led by Brown University has found that plants tinker with their design and performance before flooding the environment with new, improved versions of themselves.

The issue: When does a grouping of plants with the same ancestor, called a clade, begin to spin off new species? Biologists have long assumed that rapid speciation occurred when a clade first developed a new physical trait or mechanism and had begun its own genetic branch. But the team, led by Brown postdoctoral research associate Stephen Smith, discovered that major lineages of flowering plants did not begin the rapid spawning of new species until they had reached a point of development at which speciation success and rate would be maximized. The results are published in the American Journal of Botany.

"Evolution is not what we previously thought," said Smith, who works in the laboratory of Brown biologist Casey Dunn. "It's not as if you get a flower, and speciation (rapidly) occurs. There is a lag. Something else is happening. There is a phase of product development, so to speak."

To tease out the latent speciation rate, Smith and colleagues from Yale University and the Heidelberg Institute for Theoretical Studies in Germany compiled the largest plant phylogeny to date, involving 55,473 species of angiosperms (flowering plants), the genealogical line that represents roughly 90 percent of all plants worldwide. The group looked at the genetic profiles for six major angiosperm clades, including grasses (Poaceae), orchids (Orchidaceae), sunflowers (Asteraceae), beans (Fabaceae), eudicots (Eudicotyledoneae), and monocots (Monocottyledoneae). Together, these branches make up 99 percent of flowering plants on Earth.

The common ancestor for the branches is Mesangiospermae, a clade that emerged more than 125 millions years ago. Yet with Mesangiospermae and the clades that spun off it, the researchers were surprised to learn that the boom in speciation did not occur around the ancestral root; instead, the diversification happened some time later, although a precise time remains elusive.

"During the early evolution of these groups," Smith said, "there is the development of features that we often recognize to identify these groups visually, but they don't begin to speciate rapidly until after the development of the features."

"These findings are consistent with the view that radiations tend to be lit by a long 'fuse,' and also with the idea that an initial innovation enables subsequent experimentation and, eventually, the evolution of a combination of characteristics that drives a major radiation," the authors write.

Smith believes some triggers for the speciation explosion could have been internal, such as building a better flower or learning how to grow faster and thus outcompete other plants. The winning edge could also have come from the arrival of pollinating insects or changes in climate. The team plans to investigate these questions.

To compile the phylogenetic tree, the group combined data gathered from an exhaustive survey of the peer-reviewed literature with a gene-wide classification of species thanks to data gathered by GenBank, a genetic sequence database run by the U.S. National Institutes of Health.

"This is a nice example of how computer science and cyberinfrastructure initiatives can help to extend the limits of biological explorations," said Alexandros Stamatakis, group leader of the scientific computing group at the Heidelberg Institute.

Contributing authors include Jeremy Beaulieu and Michael Donoghue from Yale and Stamatakis. The U.S. National Science Foundation and the German Science Foundation funded the research. The computations to assemble the phylogeny were performed at Yale's High Performance Computing Center and at the Texas Advanced Computing Center.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. A. Smith, J. M. Beaulieu, A. Stamatakis, M. J. Donoghue. Understanding angiosperm diversification using small and large phylogenetic trees. American Journal of Botany, 2011; 98 (3): 404 DOI: 10.3732/ajb.1000481

Cite This Page:

Brown University. "Like products, plants wait for optimal configuration before market success." ScienceDaily. ScienceDaily, 30 March 2011. <www.sciencedaily.com/releases/2011/03/110329134343.htm>.
Brown University. (2011, March 30). Like products, plants wait for optimal configuration before market success. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/03/110329134343.htm
Brown University. "Like products, plants wait for optimal configuration before market success." ScienceDaily. www.sciencedaily.com/releases/2011/03/110329134343.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
New Fish Species Discovered, Setting Record for World's Deepest

New Fish Species Discovered, Setting Record for World's Deepest

Buzz60 (Dec. 22, 2014) A new species of fish is discovered living five miles beneath the ocean surface, making it the deepest living fish on earth. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins