Featured Research

from universities, journals, and other organizations

Blocking carbon dioxide fixation in bacteria increases biofuel production

Date:
March 30, 2011
Source:
American Society for Microbiology
Summary:
Reducing the ability of certain bacteria to fix carbon dioxide can greatly increase their production of hydrogen gas that can be used as a biofuel, researchers report.

Reducing the ability of certain bacteria to fix carbon dioxide can greatly increase their production of hydrogen gas that can be used as a biofuel. Researchers from the University of Washington, Seattle, report their findings in the current issue of online journal mBio.

Related Articles


"Hydrogen gas is a promising transportation fuel that can be used in hydrogen fuel cells to generate an electric current with water as the only waste product," says Caroline Harwood, who conducted the study with James McKinlay. "Phototrophic bacteria, like Rhodopseudomonas palustris obtain energy from light and carbon from organic compounds during anaerobic growth. Cells can naturally produce hydrogen gas biofuel as a way of disposing of excess electrons."

Feeding these bacteria more electron rich organic compounds though, does not always produce the logically expected result of increased hydrogen production. Harwood and McKinlay analyzed metabolic functions of R. palustris grown on four different compounds to better understand what other variables might be involved.

One factor involved appears to be the Calvin cycle, a series of biochemical reactions responsible for the process known as carbon dioxide fixation. The Calvin cycle converts carbon dioxide and electrons into organic compounds. Therefore carbon dioxide-fixation and hydrogen production naturally compete for electrons.

When they tested a strain of the bacterium, which had been genetically modified to block carbon dioxide-fixation they observed an increased output of hydrogen from all four substrates.

The Calvin cycle was not the only variable affecting hydrogen production that Harwood and McKinlay identified in the paper. They also determined that the metabolic route a growth substrate took on its way to becoming a building block for making new cells also played a role.

"Our work illustrates how an understanding of bacterial metabolism and physiology can be applied to engineer microbes for the production of sustainable biofuels," says Harwood.


Story Source:

The above story is based on materials provided by American Society for Microbiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. B. McKinlay, C. S. Harwood. Calvin Cycle Flux, Pathway Constraints, and Substrate Oxidation State Together Determine the H2 Biofuel Yield in Photoheterotrophic Bacteria. mBio, 2011; 2 (2): e00323-10 DOI: 10.1128/mBio.00323-10

Cite This Page:

American Society for Microbiology. "Blocking carbon dioxide fixation in bacteria increases biofuel production." ScienceDaily. ScienceDaily, 30 March 2011. <www.sciencedaily.com/releases/2011/03/110330094022.htm>.
American Society for Microbiology. (2011, March 30). Blocking carbon dioxide fixation in bacteria increases biofuel production. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2011/03/110330094022.htm
American Society for Microbiology. "Blocking carbon dioxide fixation in bacteria increases biofuel production." ScienceDaily. www.sciencedaily.com/releases/2011/03/110330094022.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins