Featured Research

from universities, journals, and other organizations

Nano fitness: Helping enzymes stay active and keep in shape

Date:
April 6, 2011
Source:
Rensselaer Polytechnic Institute
Summary:
Scientists have developed a new technique for boosting the stability of enzymes, making them useful under a much broader range of conditions. They confined lysozyme and other enzymes inside carefully engineered nanoscale holes, or nanopores. Instead of denaturing, these embedded enzymes mostly retained their 3-D structure and exhibited a significant increase in activity.

Rensselaer researchers confined lysozyme and other enzymes inside carefully engineered nanoscale holes. Instead of denaturing, these embedded enzymes mostly retained their 3-D structure and exhibited a significant increase in activity.
Credit: Image courtesy of Rensselaer Polytechnic Institute

Proteins are critically important to life and the human body. They are also among the most complex molecules in nature, and there is much we still don't know or understand about them.

One key challenge is the stability of enzymes, a particular type of protein that speeds up, or catalyzes, chemical reactions. Taken out of their natural environment in the cell or body, enzymes can quickly lose their shape and denature. Everyday examples of enzymes denaturing include milk going sour, or eggs turning solid when boiled.

Rensselaer Polytechnic Institute Professor Marc-Olivier Coppens has developed a new technique for boosting the stability of enzymes, making them useful under a much broader range of conditions. Coppens confined lysozyme and other enzymes inside carefully engineered nanoscale holes, or nanopores. Instead of denaturing, these embedded enzymes mostly retained their 3-D structure and exhibited a significant increase in activity.

"Normally, when you put an enzyme on a surface, its activity goes down. But in this study, we discovered that when we put enzymes in nanopores -- a highly controlled environment -- the enzymatic activity goes up dramatically," said Coppens, a professor in the Department of Chemical and Biological Engineering at Rensselaer. "The enzymatic activity turns out to be very dependent on the local environment. This is very exciting."

Results of the study were published last month by the journal Physical Chemistry Chemical Physics.

Researchers at Rensselaer and elsewhere have made important discoveries by wrapping enzymes and other proteins around nanomaterials. While this immobilizes the enzyme and often results in high stability and novel properties, the enzyme's activity decreases as it loses its natural 3-D structure.

Coppens took a different approach, and inserted enzymes inside nanopores. Measuring only 3-4 nanometers (nm) in size, the enzyme lysozyme fits snugly into a nanoporous material with well-controlled pore size between 5 nm and 12 nm. Confined to this compact space, the enzymes have a much harder time unfolding or wiggling around, Coppens said.

The discovery raises many questions and opens up entirely new possibilities related to biology, chemistry, medicine, and nanoengineering, Coppens said. He envisions this technology could be adapted to better control nanoscale environments, as well as increase the activity and selectivity of different enzymes. Looking forward, Coppens and colleagues will employ molecular simulations, multiscale modeling methods, and physical experiments to better understand the fundamental mechanics of confining enzymes inside nanopores.

The study was co-authored by Lung-Ching Sang, a former Rensselaer graduate student in the Department of Chemical and Biological Engineering.

This research was supported by the National Science Foundation, via the Nanoscale Science and Engineering Center for Directed Assembly of Nanostructures at Rensselaer. The project was also supported by the International Center for Materials Nanoarchitectonics of the National Institute for Materials Science, Japan.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lung-Ching Sang, Marc-Olivier Coppens. Effects of surface curvature and surface chemistry on the structure and activity of proteins adsorbed in nanopores. Physical Chemistry Chemical Physics, 2011; 13 (14): 6689 DOI: 10.1039/C0CP02273J

Cite This Page:

Rensselaer Polytechnic Institute. "Nano fitness: Helping enzymes stay active and keep in shape." ScienceDaily. ScienceDaily, 6 April 2011. <www.sciencedaily.com/releases/2011/04/110406131847.htm>.
Rensselaer Polytechnic Institute. (2011, April 6). Nano fitness: Helping enzymes stay active and keep in shape. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/04/110406131847.htm
Rensselaer Polytechnic Institute. "Nano fitness: Helping enzymes stay active and keep in shape." ScienceDaily. www.sciencedaily.com/releases/2011/04/110406131847.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins