Featured Research

from universities, journals, and other organizations

New genetic technique probes the cause of skin cell differentiation in mammals

Date:
April 9, 2011
Source:
Rockefeller University
Summary:
A tremendous amount of genetics research has been done in flies and tiny worms, in part because scientists have good tools for tweaking these creatures' DNA. Now, by adapting a powerful method of RNA interference for use in mice, researchers have identified key pathways that cause skin cells to differentiate, eventually forming the flexible but protective outer casing of the body. The work illustrates the potential for performing relatively fast and complex genetic studies in a fellow mammal, and also provides a deeper understanding of cell differentiation in early development.

Thin-skinned. Researchers infected mouse embryos with a virus (left, red) which, through RNA interference, blocked the activity of key genes involved in skin cell differentiation and stratification. The result was that the skin failed to develop and thicken properly, allowing it to soak up a blue dye (right) that normal skin would exclude.
Credit: Image courtesy of Rockefeller University

A tremendous amount of genetics research has been done in flies and tiny worms, in part because scientists have good tools for tweaking these creatures' DNA. Now, by adapting a powerful method of RNA interference for use in mice, researchers have identified key pathways that cause skin cells to differentiate, eventually forming the flexible but protective outer casing of the body.

The work, published February 17 by Nature, illustrates the potential for performing relatively fast and complex genetic studies in a fellow mammal, and also provides a deeper understanding of cell differentiation in early development.

Led by Scott Williams, a postdoctoral fellow in Elaine Fuchs' Laboratory of Mammalian Cell Biology and Development, the researchers targeted the genes in a pathway for skin cell differentiation that had not been previously probed in vertebrates. Deploying a technique co-developed by Slobodan Beronja and Geulah Livshits in Fuch's lab and published last July in Nature Medicine, the scientists used RNA interference to systematically block the function of genes in developing mouse embryos. Williams and his colleagues in the lab were interested in the chain of events that leads to asymmetric cell division, a common developmental phenomenon by which stem cells balance self-renewal and differentiation, allowing them to generate the diversity of cell-types that create the panoply of an adult organism's tissues and organs.

Prior research in Fuchs' lab, published by Nature in 2005, showed that in early development skin begins as a single layer of symmetrically dividing epidermal progenitor cells. But at a certain point, cells begin dividing asymmetrically, or perpendicular to that layer. In asymmetric division, one daughter cell stays in the original layer, self-renews and maintains its progenitor potential; the overlying daughter cell differentiates in a process of stratification that produces an effective barrier. "As more asymmetric divisions occur, multiple layers of terminally differentiating cells are produced, so that by the time the mouse is born, its epidermis displays a self-renewing, protective skin barrier to keep harmful microbes out and bodily fluids in," says Fuchs, who is also a Howard Hughes Medical Institute investigator.

These findings pointed the way to the latest research. Drawing on previous experiments that identified genes involved in asymmetric cell division in the developing neurons of fruit flies, the Fuchs team targeted a pathway involving the mouse versions of these genes: LGN, NuMA and Dctn1. They used a method of RNA interference which is based on the fact that short pieces of RNA, called small hairpin RNAs, can destroy RNA messages from specific genes, thereby preventing the genes from producing proteins. The researchers loaded a virus with short RNA bits that target the genes of interest, and guided by ultrasound, they injected the virus into the amniotic fluid surrounding the embryos in a pregnant mouse. The virus infected the outermost layer of the embryos, which shortly after gastrulation, is the single-layered skin. This effectively silenced the genes they were targeting at precisely the right time and blocked asymmetric cell divisions. The result was that the infected mice's skin failed to develop properly, in large part because there were now too few differentiating layers to provide a good skin barrier.

Looking more closely, the scientists also found that silencing the asymmetric cell division genes LGN, NuMA and Dctn1 effectively halted signaling by a molecule, Notch, which is known to regulate differentiation in many types of cells, including skin. When they added Notch signaling back into the genetically modified embryos, the skin developed normally, providing strong evidence that Notch is a key player in the normal differentiation of skin cells.

"This technique allows us to do the kind of precise experiments that have been done in worms and flies in the much more complex system of the mouse," Williams says. "And we can do them fast, going from gene to function in about two months."

Existing methods for creating mice that lack certain genes -- "knockout" mice -- sometimes take years of intensive breeding. Fuchs' laboratory plans to use the new technique to examine in increasing detail the molecular pathways that govern the healthy differentiation and development of skin. The findings could help explain the possible role of stem cells in cancer, an area of research that is heating up.

"Cells that acquire characteristics of self-renewing stem cells but fail to respond to growth inhibitory signals from their environment are likely at the root of cancers," Fuchs says. "It will be interesting in the future to see whether mutations in the pathways that govern asymmetric cell division might be responsible."


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Scott E. Williams, Slobodan Beronja, H. Amalia Pasolli, Elaine Fuchs. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature, 2011; 470 (7334): 353 DOI: 10.1038/nature09793

Cite This Page:

Rockefeller University. "New genetic technique probes the cause of skin cell differentiation in mammals." ScienceDaily. ScienceDaily, 9 April 2011. <www.sciencedaily.com/releases/2011/04/110407202212.htm>.
Rockefeller University. (2011, April 9). New genetic technique probes the cause of skin cell differentiation in mammals. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2011/04/110407202212.htm
Rockefeller University. "New genetic technique probes the cause of skin cell differentiation in mammals." ScienceDaily. www.sciencedaily.com/releases/2011/04/110407202212.htm (accessed August 31, 2014).

Share This




More Plants & Animals News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins