Featured Research

from universities, journals, and other organizations

Collecting the sun's energy: Novel electrode for flexible thin-film solar cells

Date:
April 20, 2011
Source:
Empa
Summary:
Conventional silicon-based rigid solar cells generally found on the market are not suitable for manufacturing moldable thin-film solar cells, in which a transparent, flexible and electrically conductive electrode collects the light and carries away the current. A new woven polymer electrode has now produced first results which are very promising, indicating that the new material may be a substitute for indium tin oxide coatings.

Flexible precision fabric which, in cooperation with the Swiss company Sefar AG, was developed into an electrode for thin-film solar cells.
Credit: Image courtesy of Empa

Conventional silicon-based rigid solar cells generally found on the market are not suitable for manufacturing moldable thin-film solar cells, in which a transparent, flexible and electrically conductive electrode collects the light and carries away the current. A woven polymer electrode developed by Empa has now produced first results which are very promising, indicating that the new material may be a substitute for indium tin oxide coatings.

The scarcity of raw materials and increasing usage of rare metals is making electronic components and devices more and more costly. Such rare metals are used, for example, to make the transparent electrodes found in mobile phone touchscreen displays, liquid-crystal displays, organic LEDs and thin-film solar cells. The material of choice in these cases is indium tin oxide (ITO), a largely transparent mixed oxide. Because ITO is relatively expensive, however, it is uneconomic to use in large area applications such as solar cells.

The search for alternatives

Indium-free transparent oxides do exist, but with demand for them increasing they too are tending to become scarce. In addition, the principal disadvantages such as brittleness remain. The search for alternative coatings which are both transparent and electrically conductive is therefore intense, with materials such as conductive polymers, carbon nanotubes or graphenes coming under scrutiny. Carbon-based electrodes, however, generally show excessive surface resistance values which make them poor electrical conductors. If a metallic grid is integrated into the organic layer, it reduces not just its resistance but also its mechanical stability. If a solar cell made out of this material is bent, the electrode layers break and are no longer conductive. The challenge thus consists of manufacturing flexible yet stable conductive substrates, ideally in a cost-effective industrial rolling process.

One solution: woven electrodes

One particularly promising possibility is the use of a transparent flexible woven polymer, which Empa has developed together with the company Sefar AG in a project financially supported by the Swiss Commission for Technology and Innovation (CTI). Sefar, which specializes in precision fabrics, is able to produce the woven polymer economically and in large quantities using a roll to roll process similar to the way newspapers are printed. Metal wires woven into the material ensure that it is electrically conductive. In a second process step the material is embedded in an inert plastic layer which does not, however, completely cover the metal filaments, thus retaining its conductivity. The electrode which results is transparent, stable and yet flexible. The Empa researchers then applied a series of coatings to this new substrate to create a novel organic solar cell whose efficiency is compatible to conventional ITO-based cells. In addition, the woven electrode is significantly more stable when deformed than commercially available flexible plastic substrates to which a thin layer of conductive ITO has been applied.


Story Source:

The above story is based on materials provided by Empa. Note: Materials may be edited for content and length.


Journal Reference:

  1. William Kylberg, Fernando Araujo de Castro, Peter Chabrecek, Uriel Sonderegger, Bryan Tsu-Te Chu, Frank Nόesch, Roland Hany. Woven Electrodes for Flexible Organic Photovoltaic Cells. Advanced Materials, 2011; 23 (8): 1015 DOI: 10.1002/adma.201003391

Cite This Page:

Empa. "Collecting the sun's energy: Novel electrode for flexible thin-film solar cells." ScienceDaily. ScienceDaily, 20 April 2011. <www.sciencedaily.com/releases/2011/04/110419082659.htm>.
Empa. (2011, April 20). Collecting the sun's energy: Novel electrode for flexible thin-film solar cells. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/04/110419082659.htm
Empa. "Collecting the sun's energy: Novel electrode for flexible thin-film solar cells." ScienceDaily. www.sciencedaily.com/releases/2011/04/110419082659.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins