Featured Research

from universities, journals, and other organizations

Collecting the sun's energy: Novel electrode for flexible thin-film solar cells

Date:
April 20, 2011
Source:
Empa
Summary:
Conventional silicon-based rigid solar cells generally found on the market are not suitable for manufacturing moldable thin-film solar cells, in which a transparent, flexible and electrically conductive electrode collects the light and carries away the current. A new woven polymer electrode has now produced first results which are very promising, indicating that the new material may be a substitute for indium tin oxide coatings.

Flexible precision fabric which, in cooperation with the Swiss company Sefar AG, was developed into an electrode for thin-film solar cells.
Credit: Image courtesy of Empa

Conventional silicon-based rigid solar cells generally found on the market are not suitable for manufacturing moldable thin-film solar cells, in which a transparent, flexible and electrically conductive electrode collects the light and carries away the current. A woven polymer electrode developed by Empa has now produced first results which are very promising, indicating that the new material may be a substitute for indium tin oxide coatings.

The scarcity of raw materials and increasing usage of rare metals is making electronic components and devices more and more costly. Such rare metals are used, for example, to make the transparent electrodes found in mobile phone touchscreen displays, liquid-crystal displays, organic LEDs and thin-film solar cells. The material of choice in these cases is indium tin oxide (ITO), a largely transparent mixed oxide. Because ITO is relatively expensive, however, it is uneconomic to use in large area applications such as solar cells.

The search for alternatives

Indium-free transparent oxides do exist, but with demand for them increasing they too are tending to become scarce. In addition, the principal disadvantages such as brittleness remain. The search for alternative coatings which are both transparent and electrically conductive is therefore intense, with materials such as conductive polymers, carbon nanotubes or graphenes coming under scrutiny. Carbon-based electrodes, however, generally show excessive surface resistance values which make them poor electrical conductors. If a metallic grid is integrated into the organic layer, it reduces not just its resistance but also its mechanical stability. If a solar cell made out of this material is bent, the electrode layers break and are no longer conductive. The challenge thus consists of manufacturing flexible yet stable conductive substrates, ideally in a cost-effective industrial rolling process.

One solution: woven electrodes

One particularly promising possibility is the use of a transparent flexible woven polymer, which Empa has developed together with the company Sefar AG in a project financially supported by the Swiss Commission for Technology and Innovation (CTI). Sefar, which specializes in precision fabrics, is able to produce the woven polymer economically and in large quantities using a roll to roll process similar to the way newspapers are printed. Metal wires woven into the material ensure that it is electrically conductive. In a second process step the material is embedded in an inert plastic layer which does not, however, completely cover the metal filaments, thus retaining its conductivity. The electrode which results is transparent, stable and yet flexible. The Empa researchers then applied a series of coatings to this new substrate to create a novel organic solar cell whose efficiency is compatible to conventional ITO-based cells. In addition, the woven electrode is significantly more stable when deformed than commercially available flexible plastic substrates to which a thin layer of conductive ITO has been applied.


Story Source:

The above story is based on materials provided by Empa. Note: Materials may be edited for content and length.


Journal Reference:

  1. William Kylberg, Fernando Araujo de Castro, Peter Chabrecek, Uriel Sonderegger, Bryan Tsu-Te Chu, Frank Nόesch, Roland Hany. Woven Electrodes for Flexible Organic Photovoltaic Cells. Advanced Materials, 2011; 23 (8): 1015 DOI: 10.1002/adma.201003391

Cite This Page:

Empa. "Collecting the sun's energy: Novel electrode for flexible thin-film solar cells." ScienceDaily. ScienceDaily, 20 April 2011. <www.sciencedaily.com/releases/2011/04/110419082659.htm>.
Empa. (2011, April 20). Collecting the sun's energy: Novel electrode for flexible thin-film solar cells. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/04/110419082659.htm
Empa. "Collecting the sun's energy: Novel electrode for flexible thin-film solar cells." ScienceDaily. www.sciencedaily.com/releases/2011/04/110419082659.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins