Featured Research

from universities, journals, and other organizations

Salmonella utilize multiple modes of infection: New mechanism that helps with invading host cells discovered

Date:
April 22, 2011
Source:
Helmholtz Association of German Research Centres
Summary:
Scientists have discovered a new, hitherto unknown mechanism of Salmonella invasion into gut cells: In this entry mode, the bacteria exploit the muscle power of cells to be pulled into the host cell cytoplasm. Thus, the strategies Salmonella use to infect cells are more complex than previously thought.

Salmonella typhimurium.
Credit: Copyright Manfred Rohde / HZI

Scientists from the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany have discovered a new, hitherto unknown mechanism of Salmonella invasion into gut cells: In this entry mode, the bacteria exploit the muscle power of cells to be pulled into the host cell cytoplasm. Thus, the strategies Salmonella use to infect cells are more complex than previously thought.

According to the World Health Organization, the number of Salmonella infections is continuously rising, and the severity of infections is increasing. One of the reasons for this may be the sophisticated infection strategies the bacteria have evolved. The striking diversity of invasion strategies may allow Salmonella to infect multiple cell types and different hosts.

"Salmonella do not infect their hosts according to textbook model," says Theresia Stradal, group leader at the Helmholtz Centre in Braunschweig, who has recently accepted a call to the University of Münster. "Only a single infection mechanism has seriously been discussed in the field up till now -without understanding all the details," adds Klemens Rottner, now Professor at the University of Bonn.

All entry mechanisms employed by Salmonella target the so-called actin cytoskeleton of the host cell. Actin can polymerise into fine and dynamic fibrils, also called filaments, which associate into networks or fibres. These structures stabilise the cell and enable it to move, as they are constantly built up and taken down. One of the most important core elements is the Arp2/3 complex that nucleates the assembly of actin monomers into filaments.

Extensions of the cell membrane are filled with actin filaments. In the commonly accepted infection mechanism, Salmonella abuses the Arp2/3 complex to enter the host cell: the bacteria activate the complex and thus initiate the formation actin filaments and development of prominent membrane extensions, so-called ruffles. These ruffles surround and enclose the bacteria so that they end up in the cell interior. Last year, the research groups headed by Theresia Stradal and Klemens Rottner discovered that Salmonella can also reach the cell interior without initiating membrane ruffles. With this, the researchers disproved a long-standing dogma.

In their recent study, the experts from Braunschweig now describe a completely unknown infection mechanism. The results have just appeared in the latest issue of the journal Cell Host & Microbe. In this new infection mechanism, Salmonella also manipulate the actin cytoskeleton of the host cell. This time, however, they do not induce the generation of new filaments, but activate the motor protein myosin II. The interplay of actin and myosin II in muscle cells is well known: in a contracting muscle, myosin and actin filaments slide along each other and this way shorten the muscle; it contracts.

In epithelial cells, the contractile structures are less organised but work similarly. Here, actin and myosin II form so-called stress fibres that tightly connect to the membrane. During an infection, stress fibres at the entry site can contract and pull the bacteria into the cell. "This way of infection operates independently from the Arp2/3 complex, the central component of the 'classic' infection mechanism," says Jan Hänisch, who worked on this project as postdoctoral researcher.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jan Hänisch, Robert Kölm, Milena Wozniczka, Dirk Bumann, Klemens Rottner, Theresia E.B. Stradal. Activation of a RhoA/Myosin II-Dependent but Arp2/3 Complex-Independent Pathway Facilitates Salmonella Invasion. Cell Host & Microbe, Volume 9, Issue 4, 273-285, 21 April 2011 DOI: 10.1016/j.chom.2011.03.009

Cite This Page:

Helmholtz Association of German Research Centres. "Salmonella utilize multiple modes of infection: New mechanism that helps with invading host cells discovered." ScienceDaily. ScienceDaily, 22 April 2011. <www.sciencedaily.com/releases/2011/04/110421122333.htm>.
Helmholtz Association of German Research Centres. (2011, April 22). Salmonella utilize multiple modes of infection: New mechanism that helps with invading host cells discovered. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2011/04/110421122333.htm
Helmholtz Association of German Research Centres. "Salmonella utilize multiple modes of infection: New mechanism that helps with invading host cells discovered." ScienceDaily. www.sciencedaily.com/releases/2011/04/110421122333.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Annual Dog Surfing Competition Draws California Crowds

Annual Dog Surfing Competition Draws California Crowds

AFP (Sep. 30, 2014) — The best canine surfers gathered for Huntington Beach's annual dog surfing competition, "Surf City, Surf Dog." Duration: 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins