Featured Research

from universities, journals, and other organizations

What keeps an asexual fish species from taking over?

Date:
May 9, 2011
Source:
University of Chicago Press Journals
Summary:
When a red-bellied dace and a finescale dace (freshwater fish in the carp and minnow family) mate with each other, they produce a hybrid with a very special ability: it can reproduce asexually. This asexual hybrid should have a tremendous evolutionary advantage over its sexually reproducing forefathers. So why doesn't the hybrid dace take over?

When a red-bellied dace and a finescale dace (freshwater fish in the carp and minnow family) mate with each other, they produce a hybrid with a very special ability: it can reproduce asexually. This asexual hybrid should have a tremendous evolutionary advantage over its sexually reproducing forefathers.

Related Articles


In sexual populations, two individuals need to get together to reproduce, but in asexual populations every individual can reproduce on its own, giving asexuals twice the reproductive potential. Theoretically, the asexual advantage should enable the hybrids to outcompete sexual dace living in the same pond. But in reality that doesn't happen. Sexual and asexual dace are known to live side-by-side.

So why doesn't the hybrid dace take over? According to a study by researchers from the University of British Columbia, it's because the hybrids aren't as healthy. Using swimming speed as a proxy for overall health, the researchers found that hybrids performed worse than at least one of the parent species in a series of speed tests.

The results suggest that at minimum, the hybrid has no physiological performance advantage over the sexual species, and is probably at something of a disadvantage. The lower physiological performance may counteract the hybrids' reproductive advantage, preventing them from taking over. The results offer one possible explanation for why sexual reproduction has stayed dominant in vertebrates

The research is published in the May/June 2011 issue of the journal Physiological and Biochemical Zoology.


Story Source:

The above story is based on materials provided by University of Chicago Press Journals. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel W. Baker, Linda M. Hanson, Anthony P. Farrell, Colin J. Brauner. Exceptional CO2Tolerance in White Sturgeon (Acipenser transmontanus) Is Associated with Protection of Maximum Cardiac Performance during Hypercapnia In Situ. Physiological and Biochemical Zoology, 2011; 84 (3): 239 DOI: 10.1086/660038

Cite This Page:

University of Chicago Press Journals. "What keeps an asexual fish species from taking over?." ScienceDaily. ScienceDaily, 9 May 2011. <www.sciencedaily.com/releases/2011/05/110502163318.htm>.
University of Chicago Press Journals. (2011, May 9). What keeps an asexual fish species from taking over?. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2011/05/110502163318.htm
University of Chicago Press Journals. "What keeps an asexual fish species from taking over?." ScienceDaily. www.sciencedaily.com/releases/2011/05/110502163318.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins