Featured Research

from universities, journals, and other organizations

Protein keeps sleep-deprived flies ready to learn

Date:
May 8, 2011
Source:
Washington University School of Medicine
Summary:
A protein that helps the brain develop early in life can fight the mental fuzziness induced by sleep deprivation, according to researchers.

A protein that helps the brain develop early in life can fight the mental fuzziness induced by sleep deprivation, according to researchers at Washington University School of Medicine in St. Louis.

Related Articles


"It's interesting that NOTCH, a protein that plays such a prominent role in development, also has important functions in the adult brain," says senior author Paul Shaw, PhD, associate professor of neurobiology. "To our surprise, we found if NOTCH activity is boosted in the brains of sleep-deprived fruit flies, the flies can continue to stay sharp and learn after sleep deprivation. They behave as if they had a full night's sleep."

Shaw studies interactions between sleep and learning to develop treatments that help the brain resist the mental impairments imposed by sleep deprivation. He wants to assist people forced to work with minimal sleep, such as members of the military or disaster relief workers.

The findings appear online May 5 in Current Biology.

Shaw and his colleagues test flies' ability to learn by pairing a negative stimulus (the chemical quinine, which flies prefer to avoid) with a positive stimulus (a light, which flies instinctively seek). When offered an opportunity to enter a darkened tube or a lighted tube with quinine, flies that can learn suppress their natural desire to choose the light. Flies, like humans, show a progressive decline in cognitive performance during the course of a typical waking day. Prolonged disruption of sleep causes a much sharper drop in learning.

Shaw became interested in NOTCH when his group found that sleep deprivation in flies caused increased activity in a gene that suppresses NOTCH. They found a similar increase in humans following sleep loss. They went on to show that when that suppressor is genetically disabled, allowing increased NOTCH activity, flies continue to learn even when sleep-deprived.

To further confirm NOTCH's involvement in these processes, Shaw and lead author Laurent Seugnet, PhD, a researcher now at the Lyon Neuroscience Research Center in Lyon, France, analyzed where NOTCH is made in the brain. They found that in adult fruit flies, specialized brain cells known as glia make NOTCH. Scientists have typically regarded glia as passive support cells that merely nourish and supply neurons, the cells that do the "work" of the brain. According to Shaw, though, this study and others have scientists reconsidering how actively glia may be involved in certain mental processes, including sleep.

"We may want to target glia to reduce or slow the cognitive deficits associated with increased wakefulness, allowing people such as emergency personnel and air traffic controllers to stay awake and functional for extended periods of time," Shaw says. "If modifying glia can slow negative outcomes associated with prolonged wakefulness, that may provide us with a more natural way of helping people stay awake than directly targeting neurons."

Seugnet L, Suzuki Y, Merlin G, Gottschalk L, Duntley SP, Shaw PJ. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Current Biology, May 5, 2011.

Funding from the McDonnell Center for Cellular and Molecular Neurobiology and the National Institutes of Health (NIH) Neuroscience Blueprint Core Grant supported this research.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Laurent Seugnet, Yasuko Suzuki, Gabriel Merlin, Laura Gottschalk, Stephen P. Duntley, Paul J. Shaw. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Current Biology, May 5, 2011 DOI: 10.1016/j.cub.2011.04.001

Cite This Page:

Washington University School of Medicine. "Protein keeps sleep-deprived flies ready to learn." ScienceDaily. ScienceDaily, 8 May 2011. <www.sciencedaily.com/releases/2011/05/110505123952.htm>.
Washington University School of Medicine. (2011, May 8). Protein keeps sleep-deprived flies ready to learn. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2011/05/110505123952.htm
Washington University School of Medicine. "Protein keeps sleep-deprived flies ready to learn." ScienceDaily. www.sciencedaily.com/releases/2011/05/110505123952.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are We Winning The Fight Against Ebola?

Are We Winning The Fight Against Ebola?

Newsy (Jan. 29, 2015) The World Health Organization announced the fight against Ebola has entered its second phase as the number of cases per week has steadily dropped. Video provided by Newsy
Powered by NewsLook.com
Measles Scare Sends 66 Calif. Students Home

Measles Scare Sends 66 Calif. Students Home

AP (Jan. 29, 2015) Officials say 66 students at a Southern California high school have been told to stay home through the end of next week because they may have been exposed to measles and are not vaccinated. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Group Encourages Black Moms to Breastfeed

Group Encourages Black Moms to Breastfeed

AP (Jan. 29, 2015) A grassroots effort is underway in several US cities to encourage more black women to breastfeed their babies by teaching them the benefits of the age-old practice, which is sometimes shunned in African-American communities. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Sugary Drinks May Cause Early Puberty In Girls, Study Says

Sugary Drinks May Cause Early Puberty In Girls, Study Says

Newsy (Jan. 28, 2015) Harvard researchers found that girls who consumed more than 1.5 sugary drinks a day had their first period earlier than those who drank less. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins