Featured Research

from universities, journals, and other organizations

Do microbes swim faster or slower in elastic fluids? Research answers long-standing question

Date:
May 18, 2011
Source:
University of Pennsylvania
Summary:
A biomechanical experiment has answered a long-standing theoretical question: Will microorganisms swim faster or slower in elastic fluids? For a prevalent type of swimming, undulation, the answer is "slower."

A biomechanical experiment conducted at the University of Pennsylvania School of Engineering and Applied Science has answered a long-standing theoretical question: Will microorganisms swim faster or slower in elastic fluids? For a prevalent type of swimming, undulation, the answer is "slower."

Paulo Arratia, assistant professor of mechanical engineering and applied mechanics, along with student Xiaoning Shen, conducted the experiment. Their findings were published in the journal Physical Review Letters.

Many animals, microorganisms and cells move by undulation, and they often do so through elastic fluids. From worms aerating wet soil to sperm racing toward an egg, swimming dynamics in elastic fluids is relevant to a number of facets of everyday life; however, decades of research in this area have been almost entirely theoretical or done with computer models. Only a few investigations involved live organisms.

"There have been qualitative observations of sperm cells, for example, where you put sperm in water and watch their tails, then put them in an elastic fluid and see how they swim differently," Arratia said. "But this difference has never been characterized, never put into numbers to quantify exactly how much elasticity affects the way they swim, is it faster or slower and why."

The main obstacle for quantitatively testing these theories with live organisms is developing an elastic fluid in which they can survive, behave normally and in which they can be effectively observed under a microscope.

Arratia and Shen experimented on the nematode C. elegans, building a swimming course for the millimeter-long worms. The researchers filmed them through a microscope while the creatures swam the course in many different liquids with different elasticity but the same viscosity.

Though the two liquid traits, elasticity and viscosity, sound like they are two sides of the same coin, they are actually independent of each other. Viscosity is a liquid's resistance to flowing; elasticity describes its tendency to resume its original shape after it has been deformed. All fluids have some level of viscosity, but certain liquids like saliva or mucus, under certain conditions, can act like a rubber band.

Increased viscosity would slow a swimming organism, but how one would fare with increased elasticity was an open question.

"The theorists had a lot of different predictions," Arratia said. "Some people said elasticity would make things go faster. Others said it would make things go slower. It was all over the map.

"We were the first ones to show that, with this animal, elasticity actually brings the speed and swimming efficiency down."

The reason the nematodes swam slower has to do with how viscosity and elasticity can influence each other.

"In order to make our fluids elastic, we put polymers in them," Arratia said. "DNA, for example, is a polymer. What we use is very similar to DNA, in that if you leave it alone it is coiled. But if you apply a force to it, the DNA or our polymer, will start to unravel.

"With each swimming stroke, the nematode stretches the polymer. And every time the polymers are stretched, the viscosity goes up. And as the viscosity goes up, it's more resistance to move through."

Beyond giving theorists and models a real-world benchmark to work from, Arratia and Shen's experiment opens the door for more live-organism experiments. There are still many un-answered questions relating to swimming dynamics and elasticity.

"We can increase the elasticity and see if there is a mode in which speed goes up again. Once the fluid is strongly elastic, or closer to a solid, we want to see what happens," Arratia said. "Is there a point where it switches from swimming to crawling?"

Arratia and Shen's research was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Journal Reference:

  1. X. Shen, P. Arratia. Undulatory Swimming in Viscoelastic Fluids. Physical Review Letters, 2011; 106 (20) DOI: 10.1103/PhysRevLett.106.208101

Cite This Page:

University of Pennsylvania. "Do microbes swim faster or slower in elastic fluids? Research answers long-standing question." ScienceDaily. ScienceDaily, 18 May 2011. <www.sciencedaily.com/releases/2011/05/110518121225.htm>.
University of Pennsylvania. (2011, May 18). Do microbes swim faster or slower in elastic fluids? Research answers long-standing question. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/05/110518121225.htm
University of Pennsylvania. "Do microbes swim faster or slower in elastic fluids? Research answers long-standing question." ScienceDaily. www.sciencedaily.com/releases/2011/05/110518121225.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) — 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins