Featured Research

from universities, journals, and other organizations

Teaching algae to make fuel: New process could lead to production of hydrogen using bioengineered microorganisms

Date:
May 26, 2011
Source:
Massachusetts Institute of Technology
Summary:
Many kinds of algae and cyanobacteria, common water-dwelling microorganisms, are capable of using energy from sunlight to split water molecules and release hydrogen, which holds promise as a clean and carbon-free fuel for the future. One reason this approach hasn't yet been harnessed for fuel production is that under ordinary circumstances, hydrogen production takes a back seat to the production of compounds that the organisms use to support their own growth.

Postdoctoral researcher Iftach Yacoby holds vials containing two of the materials used in the research: On the right, green photosynthetic membranes derived from plants, and on the left, brown ferredoxin protein, one of two enzymes the team combined to increase hydrogen production.
Credit: Patrick Gillooly

Many kinds of algae and cyanobacteria, common water-dwelling microorganisms, are capable of using energy from sunlight to split water molecules and release hydrogen, which holds promise as a clean and carbon-free fuel for the future. One reason this approach hasn't yet been harnessed for fuel production is that under ordinary circumstances, hydrogen production takes a back seat to the production of compounds that the organisms use to support their own growth.

Related Articles


But Shuguang Zhang, associate director of MIT's Center for Biomedical Engineering, and postdocs Iftach Yacoby and Sergii Pochekailov, together with colleagues at Tel Aviv University in Israel and the National Renewable Energy Laboratory in Colorado, have found a way to use bioengineered proteins to flip this preference, allowing more hydrogen to be produced.

"The algae are really not interested in producing hydrogen, they want to produce sugar," Yacoby says -- the sugar is what they need for their own survival, and the hydrogen is just a byproduct. But a multitasking enzyme, introduced into the liquid where the algae are at work, both suppresses the sugar production and redirects the organisms' energies into hydrogen production. The work is described in a paper being published online this week in the Proceedings of the National Academy of Sciences, and was supported in part by a European Molecular Biology Organization postdoctoral fellowship, the Yang Trust Fund and the U.S. Department of Energy's National Renewable Energy Laboratory.

Adding the bioengineered enzyme increases the rate of algal hydrogen production by about 400 percent, Yacoby says. The sugar production is suppressed but not eliminated, he explains, because "if it went to zero, it would kill the organism."

The research demonstrates for the first time how the two processes carried out by algae compete with each other; it also shows how that competition could be modified to favor hydrogen production in a laboratory environment. Zhang and Yacoby plan to continue developing the system to increase its efficiency of hydrogen production.

"It's one step closer to an industrial process," Zhang says. "First, you have to understand the science" -- which has been achieved through this experimental work. Now, developing it further -- through refinements to produce a viable commercial system for hydrogen-fuel manufacturing -- is "a matter of time and money," Zhang says.

Ultimately, such a system could be used to produce hydrogen on a large scale using water and sunlight. The hydrogen could be used directly to generate electricity in a fuel cell or to power a vehicle, or could be combined with carbon dioxide to make methane or other fuels in a renewable, carbon-neutral way, the researchers say.

In the long run, "the only viable way to produce renewable energy is to use the sun, [either] to make electricity or in a biochemical reaction to produce hydrogen," Yacoby says. "I believe there is no one solution," he adds, but rather many different approaches depending on the location and the end uses.

This particular approach, he says, is simple enough that it has promise "not just in industrialized countries, but in developing countries as well" as a source of inexpensive fuel. The algae needed for the process exist everywhere on Earth, and there are no toxic materials involved in any part of the process, he says.

"The beauty is in its simplicity," he says.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by David L. Chandler. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. Yacoby, S. Pochekailov, H. Toporik, M. L. Ghirardi, P. W. King, S. Zhang. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP -oxidoreductase (FNR) enzymes in vitro. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1103659108

Cite This Page:

Massachusetts Institute of Technology. "Teaching algae to make fuel: New process could lead to production of hydrogen using bioengineered microorganisms." ScienceDaily. ScienceDaily, 26 May 2011. <www.sciencedaily.com/releases/2011/05/110524115144.htm>.
Massachusetts Institute of Technology. (2011, May 26). Teaching algae to make fuel: New process could lead to production of hydrogen using bioengineered microorganisms. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/05/110524115144.htm
Massachusetts Institute of Technology. "Teaching algae to make fuel: New process could lead to production of hydrogen using bioengineered microorganisms." ScienceDaily. www.sciencedaily.com/releases/2011/05/110524115144.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com
Indictments in West Virginia Chemical Spill Case

Indictments in West Virginia Chemical Spill Case

AP (Dec. 17, 2014) A grand jury indicted four former executives of Freedom Industries, the company at the center of the Jan. 9, 2014 chemical spill in Charleston, West Virginia. The spill contaminated the Elk River and the water supply of 300,000 people. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins