Featured Research

from universities, journals, and other organizations

Deadly bacteria may mimic human proteins to evolve antibiotic resistance

Date:
June 2, 2011
Source:
The Translational Genomics Research Institute
Summary:
Deadly bacteria may be evolving antibiotic resistance by mimicking human proteins, according to a new study.

This image depicts a Petri dish containing a chocolate agar medium, which had been inoculated with Gram-negative Francisella tularensis live vaccine strain (LVS) bacteria. F. tularensis is the pathogen responsible for causing the disease tularemia.
Credit: CDC/ Megan Mathias and J. Todd Parker

Deadly bacteria may be evolving antibiotic resistance by mimicking human proteins, according to a new study by the Translational Genomics Research Institute (TGen).

Related Articles


This process of "molecular mimicry" may help explain why bacterial human pathogens, many of which were at one time easily treatable with antibiotics, have re-emerged in recent years as highly infectious public health threats, according to the study appearing in the online journal PLoS ONE, published by the Public Library of Science.

"This mimicry allows the bacteria to evade its host's defense responses, side-stepping our immune system," said Dr. Mia Champion, an Assistant Professor in TGen's Pathogen Genomics Division, and the study's author.

Using genomic sequencing, the spelling out of billions of genetic instructions stored in DNA, the study identified several methyltransferase protein families that are very similar in otherwise very distantly related human bacterial pathogens. These proteins also were found in hosts such as humans, mouse and rat.

Researchers found methyltransferase in the pathogen Francisella tularensis subspecies tularensis, the most virulent form of Francisella. Just one cell can be lethal. Methyltransferase is a potential virulence factor in this pathogen, which causes Tularemia, an infection common in wild rodents, especially rabbits, that can be transmitted to humans though bites, touch, eating or drinking contaminated food or water, or even breathing in the bacteria. It is severely debilitating and even fatal, if not treated.

Similar methyltransferase proteins are found in other highly infectious bacteria, including the pathogen Mycobacterium tuberculosis that causes Tuberculosis, a disease that results in more than 1 million deaths annually. The study also identified distinct methyltransferase subtypes in human pathogens such as Coxiella, Legionella, and Pseudomonas.

In general, these bacterial pathogens are considered "highly clonal," meaning that the overall gene content of each species is very similar. However, the study said, "The evolution of pathogenic bacterial species from nonpathogenic ancestors is … marked by relatively small changes in the overall gene content."

Genomic comparisons were made with several strains of the bacteria, as well as with plants and animals, including humans. The methyltransferase protein also was found to have an ortholog, or similar counterpart, in human DNA. Although the overall sequence of the orthologs is highly similar, the study identifies a protein domain carrying distinct amino acid variations present in the different organisms.

"Altogether, evidence suggests a role of the Francisella tularensis protein in a mechanism of molecular mimicry. Upon infection, bacterial pathogens dump more than 200 proteins into human macrophage cells called 'effector proteins.' Because these proteins are so similar to the human proteins, it mimics them and enables them to interfere with the body's immunity response, thereby protecting the pathogen,'' Dr. Champion said.

"These findings not only provide insights into the evolution of virulence in Francisella, but have broader implications regarding the molecular mechanisms that mediate host-pathogen relationships," she added.

Identifying small differences between the pathogen and human proteins through Next Generation genome-wide datasets could help develop molecular targets in the development of new drug treatments, she said.


Story Source:

The above story is based on materials provided by The Translational Genomics Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mia D. Champion. Host-Pathogen O-Methyltransferase Similarity and Its Specific Presence in Highly Virulent Strains of Francisella tularensis Suggests Molecular Mimicry. PLoS ONE, 2011; 6 (5): e20295 DOI: 10.1371/journal.pone.0020295

Cite This Page:

The Translational Genomics Research Institute. "Deadly bacteria may mimic human proteins to evolve antibiotic resistance." ScienceDaily. ScienceDaily, 2 June 2011. <www.sciencedaily.com/releases/2011/06/110601161127.htm>.
The Translational Genomics Research Institute. (2011, June 2). Deadly bacteria may mimic human proteins to evolve antibiotic resistance. ScienceDaily. Retrieved December 23, 2014 from www.sciencedaily.com/releases/2011/06/110601161127.htm
The Translational Genomics Research Institute. "Deadly bacteria may mimic human proteins to evolve antibiotic resistance." ScienceDaily. www.sciencedaily.com/releases/2011/06/110601161127.htm (accessed December 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, December 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Americans Drink More in the Winter

Americans Drink More in the Winter

Buzz60 (Dec. 22, 2014) The BACtrack breathalyzer app analyzed Americans' blood alcohol content and found out a whole lot of interesting things about their drinking habits. Mara Montalbano (@maramontalbano) has more. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins