Featured Research

from universities, journals, and other organizations

Deadly bacteria may mimic human proteins to evolve antibiotic resistance

Date:
June 2, 2011
Source:
The Translational Genomics Research Institute
Summary:
Deadly bacteria may be evolving antibiotic resistance by mimicking human proteins, according to a new study.

This image depicts a Petri dish containing a chocolate agar medium, which had been inoculated with Gram-negative Francisella tularensis live vaccine strain (LVS) bacteria. F. tularensis is the pathogen responsible for causing the disease tularemia.
Credit: CDC/ Megan Mathias and J. Todd Parker

Deadly bacteria may be evolving antibiotic resistance by mimicking human proteins, according to a new study by the Translational Genomics Research Institute (TGen).

This process of "molecular mimicry" may help explain why bacterial human pathogens, many of which were at one time easily treatable with antibiotics, have re-emerged in recent years as highly infectious public health threats, according to the study appearing in the online journal PLoS ONE, published by the Public Library of Science.

"This mimicry allows the bacteria to evade its host's defense responses, side-stepping our immune system," said Dr. Mia Champion, an Assistant Professor in TGen's Pathogen Genomics Division, and the study's author.

Using genomic sequencing, the spelling out of billions of genetic instructions stored in DNA, the study identified several methyltransferase protein families that are very similar in otherwise very distantly related human bacterial pathogens. These proteins also were found in hosts such as humans, mouse and rat.

Researchers found methyltransferase in the pathogen Francisella tularensis subspecies tularensis, the most virulent form of Francisella. Just one cell can be lethal. Methyltransferase is a potential virulence factor in this pathogen, which causes Tularemia, an infection common in wild rodents, especially rabbits, that can be transmitted to humans though bites, touch, eating or drinking contaminated food or water, or even breathing in the bacteria. It is severely debilitating and even fatal, if not treated.

Similar methyltransferase proteins are found in other highly infectious bacteria, including the pathogen Mycobacterium tuberculosis that causes Tuberculosis, a disease that results in more than 1 million deaths annually. The study also identified distinct methyltransferase subtypes in human pathogens such as Coxiella, Legionella, and Pseudomonas.

In general, these bacterial pathogens are considered "highly clonal," meaning that the overall gene content of each species is very similar. However, the study said, "The evolution of pathogenic bacterial species from nonpathogenic ancestors is … marked by relatively small changes in the overall gene content."

Genomic comparisons were made with several strains of the bacteria, as well as with plants and animals, including humans. The methyltransferase protein also was found to have an ortholog, or similar counterpart, in human DNA. Although the overall sequence of the orthologs is highly similar, the study identifies a protein domain carrying distinct amino acid variations present in the different organisms.

"Altogether, evidence suggests a role of the Francisella tularensis protein in a mechanism of molecular mimicry. Upon infection, bacterial pathogens dump more than 200 proteins into human macrophage cells called 'effector proteins.' Because these proteins are so similar to the human proteins, it mimics them and enables them to interfere with the body's immunity response, thereby protecting the pathogen,'' Dr. Champion said.

"These findings not only provide insights into the evolution of virulence in Francisella, but have broader implications regarding the molecular mechanisms that mediate host-pathogen relationships," she added.

Identifying small differences between the pathogen and human proteins through Next Generation genome-wide datasets could help develop molecular targets in the development of new drug treatments, she said.


Story Source:

The above story is based on materials provided by The Translational Genomics Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mia D. Champion. Host-Pathogen O-Methyltransferase Similarity and Its Specific Presence in Highly Virulent Strains of Francisella tularensis Suggests Molecular Mimicry. PLoS ONE, 2011; 6 (5): e20295 DOI: 10.1371/journal.pone.0020295

Cite This Page:

The Translational Genomics Research Institute. "Deadly bacteria may mimic human proteins to evolve antibiotic resistance." ScienceDaily. ScienceDaily, 2 June 2011. <www.sciencedaily.com/releases/2011/06/110601161127.htm>.
The Translational Genomics Research Institute. (2011, June 2). Deadly bacteria may mimic human proteins to evolve antibiotic resistance. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2011/06/110601161127.htm
The Translational Genomics Research Institute. "Deadly bacteria may mimic human proteins to evolve antibiotic resistance." ScienceDaily. www.sciencedaily.com/releases/2011/06/110601161127.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins