Featured Research

from universities, journals, and other organizations

Biologists uncover regulatory mechanism for gene expression in the visual system

Date:
June 10, 2011
Source:
New York University
Summary:
Biologists have uncovered a key regulatory mechanism used for gene expression in the visual system. Their findings offer new insights into the complexity behind the genetic make-up of biological systems.

Biologists have uncovered a key regulatory mechanism used for gene expression in the visual system. Their findings, which appear in the latest issue of the journal Cell, offer new insights into the complexity behind the genetic make-up of biological systems.
Credit: © IKO / Fotolia

Biologists have uncovered a key regulatory mechanism used for gene expression in the visual system. Their findings, which appear in the latest issue of the journal Cell, offer new insights into the complexity behind the genetic make-up of biological systems.

Related Articles


The study, which included researchers from New York University's Department of Biology, Japan's Okayama University, Cincinnati Children's Hospital, and Germany's University of Würzburg, examined the photoreceptor cells in the retina of the fruit fly Drosophila. Drosophila is a powerful model for studying eye development as it is amenable to very specific genetic manipulations, allowing researchers to analyze how its visual system functions when its different elements are affected.

Though scientists have identified specific roles for many genes in various biological contexts, the ways in which these genes interact are poorly understood. This is especially the case with the eye, an extraordinarily complex system. For example, in the Drosophila eye, expression patterns of Rhodopsins -- the light detectors of the retina -- determine at least 13 distinct types of photoreceptors.

Among their goals, the researchers sought to address how genes interact in distinct ways in different cells. In other words, how do genes work in networks to control the exquisite and precise patterns of rhodopsin gene expression?

In the Cell study, the researchers identified a gene that is a critical node in this network -- one that regulates the expression of several rhodopsin genes in the visual system. They specifically looked at how this network figured in Rhodopsin expression in several types of photoreceptors that are normally used for motion detection or color vision.

In their comparison between normal and mutant visual systems, the researchers found that the transcription factor gene defective proventriculus (dve) is a critical node in the network regulating Rhodopsin expression. In dve mutants, the Rhodopsins normally found in the color vision photoreceptors are expressed in the motion detecting photoreceptors. This mutation causes defects in light detection especially when flies are presented with subtle differences in light levels.

The dve gene is a shared component of two opposing, interlocked feed-forward loops (FFLs), which serve as critical network motifs controlling gene expression. Specifically, in one FFL, Dve acts to repress Rhodopsin expression in the motion detecting photoreceptors. Moreover, in the color vision photoreceptors, a second FFL relieves repression by Dve while activating Rhodopsin expression. Therefore, this network serves to both restrict and induce cell type-specific expression. This interlocked FFL motif may be a general mechanism to control gene expression, the researchers concluded.

"We know that genes work in combinations, but the coherence of interactions across cell types is not well understood," said Robert Johnston, a post-doctoral fellow in the laboratory of NYU biologist Claude Desplan, two of the study's co-authors. "We show how these networks function across several different cell types -- this mechanism makes sure that Rhodopsins are in the right cells."

The research was supported by a grant from the National Eye Institute, part of the National Institutes of Health.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Robert J. Johnston, Yoshiaki Otake, Pranidhi Sood, Nina Vogt, Rudy Behnia, Daniel Vasiliauskas, Elizabeth McDonald, Baotong Xie, Sebastian Koenig, Reinhard Wolf et al. Interlocked Feedforward Loops Control Cell-Type-Specific Rhodopsin Expression in the Drosophila Eye. Cell, Volume 145, Issue 6, 956-968, 10 June 2011 DOI: 10.1016/j.cell.2011.05.003

Cite This Page:

New York University. "Biologists uncover regulatory mechanism for gene expression in the visual system." ScienceDaily. ScienceDaily, 10 June 2011. <www.sciencedaily.com/releases/2011/06/110609122916.htm>.
New York University. (2011, June 10). Biologists uncover regulatory mechanism for gene expression in the visual system. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2011/06/110609122916.htm
New York University. "Biologists uncover regulatory mechanism for gene expression in the visual system." ScienceDaily. www.sciencedaily.com/releases/2011/06/110609122916.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) — Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins