Featured Research

from universities, journals, and other organizations

Under pressure, sodium, hydrogen could undergo a metamorphosis, emerging as superconductor

Date:
June 13, 2011
Source:
University at Buffalo
Summary:
In the search for superconductors, finding ways to compress hydrogen into a metal has been a point of focus ever since scientists predicted many years ago that electricity would flow, uninhibited, through such a material.

UB chemist Eva Zurek and a colleague have proposed that hydrogen may be metalized by adding sodium, resulting in a compound that could possibly lead to a new superconducting metal.
Credit: Image courtesy of University at Buffalo

In the search for superconductors, finding ways to compress hydrogen into a metal has been a point of focus ever since scientists predicted many years ago that electricity would flow, uninhibited, through such a material.

Liquid metallic hydrogen is thought to exist in the high-gravity interiors of Jupiter and Saturn. But so far, on Earth, researchers have been unable to use static compression techniques to squeeze hydrogen under high enough pressures to convert it into a metal. Shock-wave methods have been successful, but as experiments with diamond anvil cells have shown, hydrogen remains an insulator even under pressures equivalent to those found in Earth's core.

To circumvent the problem, a pair of University at Buffalo chemists has proposed an alternative solution for metallizing hydrogen: Add sodium to hydrogen, they say, and it just might be possible to convert the compound into a superconducting metal under significantly lower pressures.

The research, published June 10 in Physical Review Letters, details the findings of UB Assistant Professor Eva Zurek and UB postdoctoral associate Pio Baettig.

Using an open-source computer program that UB PhD student David Lonie designed, Zurek and Baettig looked for sodium polyhydrides that, under pressure, would be viable superconductor candidates. The program, XtalOpt <http://xtalopt.openmolecules.net>, is an evolutionary algorithm that incorporates quantum mechanical calculations to determine the most stable geometries or crystal structures of solids.

In analyzing the results, Baettig and Zurek found that NaH9, which contains one sodium atom for every nine hydrogen atoms, is predicted to become metallic at an experimentally achievable pressure of about 250 gigapascals -- about 2.5 million times Earth's standard atmospheric pressure, but less than the pressure at Earth's core (about 3.5 million atmospheres).

"It is very basic research," says Zurek, a theoretical chemist. "But if one could potentially metallize hydrogen using the addition of sodium, it could ultimately help us better understand superconductors and lead to new approaches to designing a room-temperature superconductor."

By permitting electricity to travel freely, without resistance, such a superconductor could dramatically improve the efficiency of power transmission technologies.

Zurek, who joined UB in 2009, conducted research at Cornell University as a postdoctoral associate under Roald Hoffmann, a Nobel Prize-winning theoretical chemist whose research interests include the behavior of matter under high pressure.

In October 2009, Zurek co-authored a paper with Hoffman and other colleagues in the Proceedings of the National Academy of Sciences predicting that LiH6 -- a compound containing one lithium atom for every six hydrogen atoms -- could form as a stable metal at a pressure of around 1 million atmospheres.

Neither LiH6 and NaH9 exists naturally as stable compounds on Earth, but under high pressures, their structure is predicted to be stable.

"One of the things that I always like to emphasize is that chemistry is very different under high pressures," Zurek says. "Our chemical intuition is based upon our experience at one atmosphere. Under pressure, elements that do not usually combine on the Earth's surface may mix, or mix in different proportions. The insulator iodine becomes a metal, and sodium becomes insulating. Our aim is to use the results of computational experiments in order to help develop a chemical intuition under pressure, and to predict new materials with unusual properties."


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Cite This Page:

University at Buffalo. "Under pressure, sodium, hydrogen could undergo a metamorphosis, emerging as superconductor." ScienceDaily. ScienceDaily, 13 June 2011. <www.sciencedaily.com/releases/2011/06/110613162240.htm>.
University at Buffalo. (2011, June 13). Under pressure, sodium, hydrogen could undergo a metamorphosis, emerging as superconductor. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/06/110613162240.htm
University at Buffalo. "Under pressure, sodium, hydrogen could undergo a metamorphosis, emerging as superconductor." ScienceDaily. www.sciencedaily.com/releases/2011/06/110613162240.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins