Featured Research

from universities, journals, and other organizations

Who goes there? Novel complex senses viral infection

Date:
June 23, 2011
Source:
Cell Press
Summary:
Scientists have identified a novel sensor that is necessary to activate the immune response to viral infection. The research enhances our understanding of the complex and overlapping mechanisms our immune cells use to thwart infection.

Double-stranded (ds) RNA viruses are a diverse group of viruses that include rotaviruses, a common cause of gastroenteritis. The ability of the immune system to detect and destroy viruses is critical for human health and survival. Now, a study published by Cell Press in the June 23rd issue of the journal Immunity identifies a novel sensor that is necessary to activate the immune response to viral infection. The research enhances our understanding of the complex and overlapping mechanisms our immune cells use to thwart infection.

Viruses are infectious agents composed of nucleic acid (DNA or RNA) and a protective protein coating. Viruses infect all types of organisms and can hijack host cell machinery to replicate (make many copies of themselves). The innate immune system is the body's first line of defense against viruses and detects infection by sensing viral nucleic acids. Detection of a virus leads to activation of the type 1 interferon (IFN) response, a powerful weapon that is named for its ability to "interfere" with viral replication.

"During the past decade, major efforts using genetic approaches have identified three major classes of innate immune receptors for sensing microbial nucleic acids," says senior study author, Dr. Yong-Jun Liu from the University of Texas MD Anderson Cancer Center. "However, there is a major gap in our understanding of how these receptors bind nucleic acids and whether additional receptors or coreceptors exist. For example, Toll-like receptor 3 (TLR3) has been known as the only TLR that sense dsRNA and use adaptor molecule TRIF to trigger antiviral immune responses. Intriguingly, macrophages and dendritic cells from TLR3-deficient mice but not from TRIF-deficient mice could still make significant antiviral IFN responses to dsRNA, suggesting the presence of additional TRIF-dependent dsRNA sensors"

Dr. Liu and colleagues investigated this issue by isolating and characterizing proteins that bound to a synthetic form of double-stranded viral RNA called poly I:C. Looking inside myeloid dendritic cells that are known to play a key role in pathogen detection, the researchers found two known dsRNA sensors as well as a previously unknown viral sensor complex that consists of three RNA helicases, DDX1, DDX21 and DHX36, and the adaptor molecule TRIF. This multi-helicase-TRIF complex bound directly to poly I:C and triggered an immune response. Dr. Liu's team went on to show that DDX1 directly bound to poly I:C while DDX21 and DHX36 served as bridges to TRIF and that each of the four components was essential for the appropriate immune response. Importantly, interference with the complex impaired the immune response to influenza A and a type of rotavirus.

"Our study suggests that the DDX1-DDX21-DHX36 complex represents the missing poly I:C sensor and may represent an early sensor of poly I:C that triggers initial IFN production," concludes Dr. Liu. "This initial IFN production may help to activate other know dsRNA sensors which will serve to further amplify the IFN response. This may explain the overlapping functions of the known dsRNA sensors." A better understanding of the complex mechanisms our immune system uses to detect viruses will contribute to the future design of more effective antiviral therapeutics.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhiqiang Zhang, Taeil Kim, Musheng Bao, Valeria Facchinetti, Sung Yun Jung, Amir Ali Ghaffari, Jun Qin, Genhong Cheng, Yong-Jun Liu. DDX1, DDX21, and DHX36 Helicases Form a Complex with the Adaptor Molecule TRIF to Sense dsRNA in Dendritic Cells. Immunity, Volume 34, Issue 6, 866-878, 24 June 2011 DOI: 10.1016/j.immuni.2011.03.027

Cite This Page:

Cell Press. "Who goes there? Novel complex senses viral infection." ScienceDaily. ScienceDaily, 23 June 2011. <www.sciencedaily.com/releases/2011/06/110623130340.htm>.
Cell Press. (2011, June 23). Who goes there? Novel complex senses viral infection. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/06/110623130340.htm
Cell Press. "Who goes there? Novel complex senses viral infection." ScienceDaily. www.sciencedaily.com/releases/2011/06/110623130340.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins