Featured Research

from universities, journals, and other organizations

Demonstrating the importance of dynamical systems theory

Date:
June 27, 2011
Source:
Rockefeller University Press
Summary:
Two new papers demonstrate the successes of using bifurcation theory and dynamical systems approaches to solve biological puzzles.

Properties of two successive action potentials within a burst at 8 mM Glucose. (Top) Time-dependent changes of the instantaneous equilibrium or "lead" potential VL (red) and Vm (black). (Bottom) Time-dependent changes in contributions (c) of ICaV, IKDr, IKCa(BK) and INaCa. The c of other currents were also plotted in the diagram, but are barely visible because of their minor contributions. The time scale of the x-axis is 40 s.
Credit: Cha, C.Y., et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201110611.

Two new papers demonstrate the successes of using bifurcation theory and dynamical systems approaches to solve biological puzzles.

The articles appear online in the Journal of General Physiology on June 27.

In companion papers, Akinori Noma and colleagues from Japan first present computer simulations of a model for bursting electrical activity in pancreatic beta cells, and then use bifurcation diagrams to analyze the behavior of the model. In his Commentary accompanying the articles, Arthur Sherman (National Institutes of Health) proposes that the methods demonstrated in these two papers have broader implications and demonstrate the increasingly important role of dynamical systems approaches in the field of biology.

Mathematical modeling is an important tool in understanding complex cellular processes. Unlike time-based simulations of models, which test only one set of parameter values, bifurcation diagrams analyze the solutions of the governing equations as a function of critical parameters. Such bifurcation scenarios are a powerful tool for dissecting complex systems by subdividing them into parameter regions that underlie distinct behavioral patterns, Sherman explains. He proposes that dynamic modeling will become a more prominently used tool for biologists as live cell-imaging techniques continue to reveal greater complexity and more cell-signaling mechanisms.


Story Source:

The above story is based on materials provided by Rockefeller University Press. Note: Materials may be edited for content and length.


Journal References:

  1. Chae Young Cha, Yasuhiko Nakamura, Yukiko Himeno, Jianwu Wang, Shinpei Fujimoto, Nobuya Inagaki, Yung E. Earm, Akinori Noma. Ionic mechanisms and Ca2 dynamics underlying the glucose response of pancreatic β cells: a simulation study. Journal of General Physiology, 2011; 138 (1): 21-37 DOI: 10.1085/jgp.201110611
  2. Chae Young Cha, Enrique Santos, Akira Amano, Takao Shimayoshi, Akinori Noma. Time-dependent changes in membrane excitability during glucose-induced bursting activity in pancreatic β cells. Journal of General Physiology, 2011; 138 (1): 39-47 DOI: 10.1085/jgp.201110612
  3. Arthur Sherman. Dynamical systems theory in physiology. Journal of General Physiology, 2011; 138 (1): 13-19 DOI: 10.1085/jgp.201110668

Cite This Page:

Rockefeller University Press. "Demonstrating the importance of dynamical systems theory." ScienceDaily. ScienceDaily, 27 June 2011. <www.sciencedaily.com/releases/2011/06/110627122935.htm>.
Rockefeller University Press. (2011, June 27). Demonstrating the importance of dynamical systems theory. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2011/06/110627122935.htm
Rockefeller University Press. "Demonstrating the importance of dynamical systems theory." ScienceDaily. www.sciencedaily.com/releases/2011/06/110627122935.htm (accessed April 24, 2014).

Share This



More Computers & Math News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Monkeys Are Better At Math Than We Thought, Study Shows

Monkeys Are Better At Math Than We Thought, Study Shows

Newsy (Apr. 23, 2014) A Harvard University study suggests monkeys can use symbols to perform basic math calculations. Video provided by Newsy
Powered by NewsLook.com
High Court to Hear Dispute of TV Over Internet

High Court to Hear Dispute of TV Over Internet

AP (Apr. 22, 2014) The future of Aereo, an online service that provides over-the-air TV channels, hinges on a battle with broadcasters that goes before the U.S. Supreme Court on Tuesday. (April 22) Video provided by AP
Powered by NewsLook.com
Aereo Takes on Broadcast TV Titans in Supreme Court Today

Aereo Takes on Broadcast TV Titans in Supreme Court Today

TheStreet (Apr. 22, 2014) Aereo heads to the Supreme Court today to fight for its right to stream broadcast TV over the Internet -- against broadcasters who say the start-up infringes upon copyright law. TheStreet Deputy Managing Editor Leon Lazaroff explains the importance of the case in the TV industry and details what the outcome of it could mean for broadcasters and for cloud storage services -- as Aereo allows its subscribers to not just watch live TV shows but also store content to a DVR in the cloud. Video provided by TheStreet
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins