Featured Research

from universities, journals, and other organizations

Understanding impacts of aerosols and trace gases on climate and air quality

Date:
June 29, 2011
Source:
Helsingin yliopisto (University of Helsinki)
Summary:
Atmospheric aerosol particles (otherwise known as particulate matter) have been masking the true rate of greenhouse gas induced global warming during the industrial period. New investigations show that the aerosol cooling effect will be strongly reduced by 2030, as air pollution abatements are implemented worldwide and the presently available advanced control technologies are utilized. These actions would increase the global mean temperature by roughly 1 degree Celsius.

Atmospheric aerosol particles (otherwise known as particulate matter) have been masking the true rate of greenhouse gas induced global warming during the industrial period. New investigations show that the aerosol cooling effect will be strongly reduced by 2030, as air pollution abatements are implemented worldwide and the presently available advanced control technologies are utilized. These actions would increase the global mean temperature by ca. 1 degree Celsius. This is one of the main research outcomes of the recently concluded EU EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality Interaction) project.

Related Articles


The positive impacts of aerosols are partially off-setting global warming, but at the same time aerosol particles have a negative effect on public health, causing thousands on premature deaths in Europe annually.

Identification of efficient strategies for air pollution control in Europe was another key outcome of EUCAARI. It was found that the reduction in ammonia emissions is one of the most effective ways to reduce aerosol mass concentrations and thus improve air quality in Europe. Reduction in nitric oxides is also effective, but might lead to higher ozone levels, thereby leading to another negative impact on air quality. Reduction in sulphur dioxide emissions will reduce particulate air pollution especially in the Eastern Mediterranean area.

Reduction of organic aerosol concentrations is a lot more challenging and will require reductions of gas and aerosol emissions from transportation and biomass burning. Furthermore, it is now shown that a large fraction of organic aerosols in Europe is of modern origin (as opposed to fossil fuel origins), for which the main sources are biogenic secondary organic aerosol (boreal forests), biomass burning and primary biogenic aerosol particles. All these emission sources are expected to respond to climate change, although the exact magnitude and nature of these responses remains uncertain.

The EUCAARI project, coordinated by Professor Markku Kulmala from University of Helsinki, Finland, has been the most extensive aerosol research project in Europe so far. The total budget of the project was 15 million Euros, of which 10 million Euros was provided by the European Commission FP6 Programme. In all, 48 research institutes from 24 countries participated in this project, carried out in 2007-2010.The project has led to significantly more information on the whole physical background related to aerosol formation and impacts at all scales; from nanoscale to global, from milliseconds to centuries. The quantification of the effect of aerosols on the radiative balance (cooling or heating) of the planet has been one of the most urgent tasks to underpin more informed projections of future climate change.

The project performed extensive studies from ground-based, aircraft and satellite platforms not only in Europe, but also in China, South-Africa, Brazil and India. These studies improved the theoretical understanding of the aerosol life-cycle, enabling us to make major improvements in climate and air pollution models and present new air pollution scenarios over Europe. The project outcome has been targeted to reinforce European political decision-making to develop new strategies and implementation plans for global air quality monitoring and to take Europe a leading role in developing and applying environmental technologies.


Story Source:

The above story is based on materials provided by Helsingin yliopisto (University of Helsinki). Note: Materials may be edited for content and length.


Cite This Page:

Helsingin yliopisto (University of Helsinki). "Understanding impacts of aerosols and trace gases on climate and air quality." ScienceDaily. ScienceDaily, 29 June 2011. <www.sciencedaily.com/releases/2011/06/110629083115.htm>.
Helsingin yliopisto (University of Helsinki). (2011, June 29). Understanding impacts of aerosols and trace gases on climate and air quality. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2011/06/110629083115.htm
Helsingin yliopisto (University of Helsinki). "Understanding impacts of aerosols and trace gases on climate and air quality." ScienceDaily. www.sciencedaily.com/releases/2011/06/110629083115.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins