Featured Research

from universities, journals, and other organizations

Extremely rapid water: Scientists decipher a protein-bound water chain

Date:
July 11, 2011
Source:
Ruhr-Universitaet-Bochum
Summary:
Researchers have succeeded in providing evidence that a protein is capable of creating a water molecule chain for a few milliseconds for the directed proton transfer. The combination of vibrational spectroscopy and biomolecular simulations enabled the elucidation of the proton pump mechanism of a cell-membrane protein in atomic detail. The researchers demonstrated that protein-bound water molecules play a decisive role in the function.

Three internal water molecules (red-white) in the protein transport a proton from top to bottom.
Credit: Image courtesy of Ruhr-Universitaet-Bochum

Researchers from the RUB-Department of Biophysics of Prof. Dr. Klaus Gerwert have succeeded in providing evidence that a protein is capable of creating a water molecule chain for a few milliseconds for the directed proton transfer. The combination of vibrational spectroscopy and biomolecular simulations enabled the elucidation of the proton pump mechanism of a cell-membrane protein in atomic detail. The researchers demonstrated that protein-bound water molecules play a decisive role in the function.

Their results were selected for the Early Edition of Proceedings of the National Academy of Sciences.

Protein-bound water is decisive

Specific proteins can transport protons from one side (uptake side) of the cell membrane to the other side (release side). This is a central process in biological energy conversion. In past editions of Nature and Angewandte Chemie the researchers from the Department of Biophysics had already published their observations that in the ground state the protein-bound water molecules at the release side are optimally arranged for the release of protons. "As with dominos, the protein initiates movement of the protons which finally leads to their release," explains Prof. Gerwert. Just how the protein re-attains its initial state in order to start another pumping cycle remained to be clarified. New protons must be acquired at the uptake side of the protein to substitute the released protons. The researchers in Bochum discovered that a chain of only three water molecules is formed for just a few thousandths of a second to transfer the protons into the interior of the protein.

Water molecules lead the way

The protein kills two birds with one stone. The water molecules are disordered during the release phase, which prevents the protons from being transported in the false direction. Only during the uptake phase, they are correctly aligned and can conduct protons. These results are the solution to the riddle as to why proton transfer only functions in one direction at the uptake side and why the protein is capable of effective and directional pumping. "This paper, together with the two preceding publications, now constitutes a trilogy which supplies a full explanation for the proton pumping cycle at an atomic level," summarizes Prof. Gerwert.

Experimental physics and theoretical chemistry combined

The researchers combined experimental physics with theoretical chemistry to be able to observe the processes with a high spatial and temporal resolution at a nano-level. Steffen Wolf simulated the structural changes within the protein using biomolecular computer simulations (molecular dynamics simulations). Erik Freier subsequently verified the effects experimentally using a special kind of vibrational spectroscopy developed by Prof. Gerwert (time-resolved step-scan FTIR spectroscopy). "This interdisciplinary interplay, which showed that the individual components of the protein are as precisely synchronized as the gears of a machine, was the key to success," says Prof. Gerwert.

As in water, so in the protein

The protein arranges the three water molecules so skillfully that they transport the protons using the physico-chemical Grotthuss mechanism. In the 1950s, the Nobel Prize winner Manfred Eigen elucidated this mechanism to explain extremely rapid, non-directional proton transport in water. Surprisingly enough, the publications of the RUB researchers now reveal that amino acids coupled with protein-bound water molecules can give this extremely rapid transportation a direction of movement. Prof. Gerwert's team was thus able to augment Manfred Eigen's results and apply them to protein research.

Effective conversion of light energy into chemical energy

The group of research scientists in Bochum primarily works with the membrane protein bacteriorhodopsin, which is used by certain bacteria to carry out an archaic form of photosynthesis. Bacteriorhodopsin creates a proton concentration gradient by transporting protons from the interior to the exterior of a cell. Other proteins use this gradient to produce ATP, the universal cellular fuel. It is important that the proton transport has a specific direction and that spontaneous backflow of protons is prevented to ensure that light energy can be effectively used.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Freier, S. Wolf, K. Gerwert. Proton transfer via a transient linear water-molecule chain in a membrane protein. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1104735108

Cite This Page:

Ruhr-Universitaet-Bochum. "Extremely rapid water: Scientists decipher a protein-bound water chain." ScienceDaily. ScienceDaily, 11 July 2011. <www.sciencedaily.com/releases/2011/07/110706094331.htm>.
Ruhr-Universitaet-Bochum. (2011, July 11). Extremely rapid water: Scientists decipher a protein-bound water chain. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2011/07/110706094331.htm
Ruhr-Universitaet-Bochum. "Extremely rapid water: Scientists decipher a protein-bound water chain." ScienceDaily. www.sciencedaily.com/releases/2011/07/110706094331.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins